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1 gamma: Gamma Regression for Continuous, Pos-
itive Dependent Variables

Use the gamma regression model if you have a positive-valued dependent vari-
able such as the number of years a parliamentary cabinet endures, or the seconds
you can stay airborne while jumping. The gamma distribution assumes that all
waiting times are complete by the end of the study (censoring is not allowed).

1.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

1.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for gamma regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.
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– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.

1.3 Example

Attach the sample data:

> data(coalition)

Estimate the model:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma", data = coalition)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"gamma: Gamma Regression for Continuous, Positive Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

View the regression output:

> summary(z.out)

Call:

glm(formula = formula, family = Gamma(), model = F, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2510 -0.9112 -0.2278 0.4132 1.5360

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.296e-02 1.329e-02 -0.975 0.33016

fract 1.149e-04 1.723e-05 6.668 1.19e-10 ***

numst2 -1.739e-02 5.881e-03 -2.957 0.00335 **

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for Gamma family taken to be 0.6291004)

Null deviance: 300.74 on 313 degrees of freedom

Residual deviance: 272.19 on 311 degrees of freedom

AIC: 2428.1

Number of Fisher Scoring iterations: 6

Set the baseline values (with the ruling coalition in the minority) and the alter-
native values (with the ruling coalition in the majority) for X:
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> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate expected values (qi$ev) and first differences (qi$fd):

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model: gamma

Number of simulations: 1000

Values of X

(Intercept) fract numst2

1 1 718.8121 0

attr(,"assign")

[1] 0 1 2

Values of X1

(Intercept) fract numst2

1 1 718.8121 1

attr(,"assign")

[1] 0 1 2

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

14.422 1.119 14.359 12.563 16.761

Expected Values: E(Y|X1)

mean sd 50% 2.5% 97.5%

19.271 1.123 19.197 17.337 21.716

Predicted Values: Y|X

mean sd 50% 2.5% 97.5%

14.398 12.981 10.845 0.84 50.091

Predicted Values: Y|X1

mean sd 50% 2.5% 97.5%

19.766 18.864 14.423 0.992 76.205

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

4.849 1.568 4.826 1.783 8.033

> plot(s.out)
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1.4 Model

• The Gamma distribution with scale parameter α has a stochastic compo-
nent :

Y ∼ Gamma(yi | λi, α)

f(y) =
1

αλi Γλi
yλi−1
i exp−

{yi
α

}
for α, λi, yi > 0.

• The systematic component is given by

λi =
1

xiβ

1.5 Quantities of Interest

• The expected values (qi$ev) are simulations of the mean of the stochastic
component given draws of α and β from their posteriors:

E(Y ) = αλi.
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• The predicted values (qi$pr) are draws from the gamma distribution for
each given set of parameters (α, λi).

• If x1 is specified, sim() also returns the differences in the expected values
(qi$fd),

E(Y | x1)− E(Y | x)

.

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

1.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "gamma",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.
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– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: the vector of fitted values.

– linear.predictors: the vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from a distribution de-
fined by (α, λi).

– qi$fd: the simulated first difference in the expected values for the
specified values in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Gamma Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

6

http://GKing.harvard.edu/zelig


See also

The gamma model is part of the stats package by [14]. Advanced users may
wish to refer to help(glm) and help(family), as well as [13]. Robust standard
errors are implemented via the sandwich package by [16]. Sample data are from
[9].

2 logit: Logistic Regression for Dichotomous
Dependent Variables

Logistic regression specifies a dichotomous dependent variable as a function of
a set of explanatory variables.

2.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

2.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for logistic regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame)
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.
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2.3 Examples

1. Basic Example

Attaching the sample turnout dataset:

> data(turnout)

Estimating parameter values for the logistic regression:

> z.out1 <- zelig(vote ~ age + race, model = "logit", data = turnout)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"logit: Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

>

Setting values for the explanatory variables:

> x.out1 <- setx(z.out1, age = 36, race = "white")

Simulating quantities of interest from the posterior distribution.

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

Model: logit

Number of simulations: 1000

Values of X

(Intercept) age racewhite

1 1 36 1

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

0.748 0.012 0.748 0.725 0.771

Predicted Values: Y|X

0 1

0.267 0.733
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> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th
percentile) and high education (75th percentile) while all the other vari-
ables held at their default values.

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"logit: Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> x.high <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out2, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out2, x = x.high, x1 = x.low)

> summary(s.out2)
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Model: logit

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 14

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Values of X1

(Intercept) racewhite educate

1 1 1 10

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

0.823 0.011 0.823 0.802 0.844

Expected Values: E(Y|X1)

mean sd 50% 2.5% 97.5%

0.709 0.012 0.71 0.685 0.733

Predicted Values: Y|X

0 1

0.169 0.831

Predicted Values: Y|X1

0 1

0.274 0.726

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

-0.114 0.011 -0.113 -0.137 -0.093

> plot(s.out2)

10



Y=0 Y=1

Predicted Values: Y|X

0.
0

0.
8

Y=0 Y=1

Predicted Values: Y|X1

0.
0

0.
7

0.78 0.80 0.82 0.84 0.86

0
30

Expected Values: E(Y|X)

0.68 0.70 0.72 0.74 0.76

0
25

Expected Values: E(Y|X1)

−0.16 −0.14 −0.12 −0.10 −0.08

0
30

First Differences: E(Y|X1) − E(Y|X)

Comparison of Y|X and Y|X1

0.04

0.13

0.24

0.59

Y=0 Y=1

Y
=

0
Y

=
1

0.70 0.75 0.80 0.85

0
30

Comparison of E(Y|X) and E(Y|X1)

0.70 0.75 0.80 0.85

0
30

3. Presenting Results: An ROC Plot

One can use an ROC plot to evaluate the fit of alternative model spec-
ifications. (Use demo(roc) to view this example, or see King and Zeng
(2002).)

> z.out1 <- zelig(vote ~ race + educate + age, model = "logit",

+ data = turnout)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"logit: Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> z.out2 <- zelig(vote ~ race + educate, model = "logit", data = turnout)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"logit: Logistic Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig
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> rocplot(z.out1$y, z.out2$y, fitted(z.out1), fitted(z.out2))
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2.4 Model

Let Yi be the binary dependent variable for observation i which takes the value
of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(yi | πi)
= πyii (1− πi)1−yi

where πi = Pr(Yi = 1).

• The systematic component is given by:

πi =
1

1 + exp(−xiβ)
.

where xi is the vector of k explanatory variables for observation i and β
is the vector of coefficients.
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2.5 Quantities of Interest

• The expected values (qi$ev) for the logit model are simulations of the
predicted probability of a success:

E(Y ) = πi =
1

1 + exp(−xiβ)
,

given draws of β from its sampling distribution.

• The predicted values (qi$pr) are draws from the Binomial distribution
with mean equal to the simulated expected value πi.

• The first difference (qi$fd) for the logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.
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2.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "logit",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent, πi.

– linear.predictors: the vector of xiβ

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values
of x.

– qi$pr: the simulated predicted values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simu-
lated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.
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3 ls: Least Squares Regression for Continuous
Dependent Variables

Use least squares regression analysis to estimate the best linear predictor for the
specified dependent variables.

3.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "ls", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

3.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for least squares regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors based on sandwich estimators (see [16], [2], and [15]). The
default type of robust standard error is heteroskedastic consistent (HC),
not heteroskedastic and autocorrelation consistent (HAC).

In addition, robust may be a list with the following options:

– method: choose from

∗ "vcovHC": (the default if robust = TRUE), HC standard errors.

∗ "vcovHAC": HAC standard errors without weights.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: only applies to the HAC methods above. Defaults to NULL

(the observations are chronologically ordered as in the original data).
Optionally, you may specify a time index (either as order.by = z,
where z exists outside the data frame; or as order.by = ~z, where z

is a variable in the data frame). The observations are chronologically
ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.

3.3 Examples

1. Basic Example with First Differences

Attach sample data:

> data(macro)

Estimate model:
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> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "ls", data = macro)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"ls: Least Squares Regression for Continuous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Summarize regression coefficients:

> summary(z.out1)

Call:

lm(formula = formula, weights = weights, model = F, data = data)

Residuals:

Min 1Q Median 3Q Max

-5.3008 -2.0768 -0.3187 1.9789 7.7715

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.181294 0.450572 13.719 < 2e-16 ***

gdp -0.323601 0.062820 -5.151 4.36e-07 ***

capmob 1.421939 0.166443 8.543 4.22e-16 ***

trade 0.019854 0.005606 3.542 0.000452 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

Residual standard error: 2.746 on 346 degrees of freedom

Multiple R-squared: 0.2878, Adjusted R-squared: 0.2817

F-statistic: 46.61 on 3 and 346 DF, p-value: < 2.2e-16

Set explanatory variables to their default (mean/mode) values, with high
(80th percentile) and low (20th percentile) values for the trade variable:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Model: ls

Number of simulations: 1000

Values of X
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(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 79.10131

attr(,"assign")

[1] 0 1 2 3

Values of X1

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 37.29106

attr(,"assign")

[1] 0 1 2 3

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

1 5.437 0.187 5.44 5.062 5.791

Expected Values: E(Y|X1)

mean sd 50% 2.5% 97.5%

1 4.602 0.184 4.611 4.248 4.975

Predicted Values: Y|X

mean sd 50% 2.5% 97.5%

1 5.437 0.187 5.44 5.062 5.791

Predicted Values: Y|X1

mean sd 50% 2.5% 97.5%

1 4.602 0.184 4.611 4.248 4.975

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

1 -0.835 0.223 -0.838 -1.27 -0.404

2. Using Dummy Variables

Estimate a model with fixed effects for each country. Note that you do
not need to create dummy variables, as the program will automatically
parse the unique values in the selected variable into discrete levels.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(country),

+ model = "ls", data = macro)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"ls: Least Squares Regression for Continuous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig
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Set values for the explanatory variables, using the default mean/mode
values, with country set to the United States and Japan, respectively:

> x.US <- setx(z.out2, country = "United States")

> x.Japan <- setx(z.out2, country = "Japan")

Simulate quantities of interest:

> s.out2 <- sim(z.out2, x = x.US, x1 = x.Japan)

3.4 Model

• The stochastic component is described by a density with mean µi and the
common variance σ2

Yi ∼ f(yi | µi, σ2).

• The systematic component models the conditional mean as

µi = xiβ

where xi is the vector of covariates, and β is the vector of coefficients.

The least squares estimator is the best linear predictor of a dependent
variable given xi, and minimizes the sum of squared residuals,

∑n
i=1(Yi−

xiβ)2.

3.5 Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the stochastic
component,

E(Y ) = xiβ,

given a draw of β from its sampling distribution.

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.
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3.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "ls", data),
then you may examine the available information in z.out by using names(z.out),
see the coefficients by using z.out$coefficients, and a default summary
of information through summary(z.out). Other elements available through the
$ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: fitted values.

– df.residual: the residual degrees of freedom.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

β̂ =

(
n∑
i=1

x′ixi

)−1∑
xiyi

– sigma: the square root of the estimate variance of the random error
e:

σ̂ =

∑
(Yi − xiβ̂)2

n− k
– r.squared: the fraction of the variance explained by the model.

R2 = 1−
∑

(Yi − xiβ̂)2∑
(yi − ȳ)2

– adj.r.squared: the above R2 statistic, penalizing for an increased
number of explanatory variables.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first differences (or differences in expected val-
ues) for the specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.
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How to Cite the Least Squares Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The least squares regression is part of the stats package by William N. Ven-
ables and Brian D. Ripley [14].In addition, advanced users may wish to refer to
help(lm) and help(lm.fit).Robust standard errors are implemented via the
sandwich package by Achim Zeileis [16].Sample data are from [9].

How to Cite the Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The logit model is part of the stats package by [14]. Advanced users may wish to
refer to help(glm) and help(family), as well as [13]. Robust standard errors
are implemented via the sandwich package by [16]. Sample data are from [9].

4 negbinom: Negative Binomial Regression for
Event Count Dependent Variables

Use the negative binomial regression if you have a count of events for each ob-
servation of your dependent variable. The negative binomial model is frequently
used to estimate over-dispersed event count models.
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4.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "negbinom", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

4.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for negative binomial regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.

4.3 Example

Load sample data:

> data(sanction)

Estimate the model:

> z.out <- zelig(num ~ target + coop, model = "negbinom", data = sanction)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"negbinom: Negative Binomial Regression for Event Count Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)
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Call:

"glm.nb"(weights = weights, formula = formula, data = data, .hook = "robust.glm.hook")

Deviance Residuals:

Min 1Q Median 3Q Max

-2.0302 -0.5118 -0.1418 -0.0191 3.9987

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.5641 0.3944 -3.965 7.33e-05 ***

target 0.1510 0.1442 1.047 0.295

coop 1.2857 0.1099 11.703 < 2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for Negative Binomial(1.8416) family taken to be 1)

Null deviance: 237.094 on 77 degrees of freedom

Residual deviance: 56.545 on 75 degrees of freedom

AIC: 360.19

Number of Fisher Scoring iterations: 1

Theta: 1.842

Std. Err.: 0.353

2 x log-likelihood: -352.188

Set values for the explanatory variables to their default mean values:

> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Model: negbinom

Number of simulations: 1000

Values of X

(Intercept) target coop

1 1 2.141026 1.807692

attr(,"assign")

[1] 0 1 2
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Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

2.966 0.335 2.947 2.36 3.722

Predicted Values: Y|X

mean sd 50% 2.5% 97.5%

2.958 2.872 2 0 10

> plot(s.out)
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4.4 Model

Let Yi be the number of independent events that occur during a fixed time
period. This variable can take any non-negative integer value.

• The negative binomial distribution is derived by letting the mean of the
Poisson distribution vary according to a fixed parameter ζ given by the
Gamma distribution. The stochastic component is given by

Yi | ζi ∼ Poisson(ζiµi),

ζi ∼
1

θ
Gamma(θ).
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The marginal distribution of Yi is then the negative binomial with mean
µi and variance µi + µ2

i /θ:

Yi ∼ NegBinom(µi, θ),

=
Γ(θ + yi)

y! Γ(θ)

µyii θ
θ

(µi + θ)θ+yi
,

where θ is the systematic parameter of the Gamma distribution modeling
ζi.

• The systematic component is given by

µi = exp(xiβ)

where xi is the vector of k explanatory variables and β is the vector of
coefficients.

4.5 Quantities of Interest

• The expected values (qi$ev) are simulations of the mean of the stochastic
component. Thus,

E(Y ) = µi = exp(xiβ),

given simulations of β.

• The predicted value (qi$pr) drawn from the distribution defined by the
set of parameters (µi, θ).

• The first difference (qi$fd) is

FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,
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where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

4.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "negbinom",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– theta: the maximum likelihood estimate for the stochastic parameter
θ.

– SE.theta: the standard error for theta.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: a vector of the fitted values for the systemic com-
ponent λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:
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– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution
defined by (µi, θ).

– qi$fd: the simulated first differences in the simulated expected values
given the specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Negative Binomial Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

5 normal: Normal Regression for Continuous De-
pendent Variables

The Normal regression model is a close variant of the more standard least squares
regression model (see Section 3). Both models specify a continuous dependent
variable as a linear function of a set of explanatory variables. The Normal
model reports maximum likelihood (rather than least squares) estimates. The
two models differ only in their estimate for the stochastic parameter σ.

5.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

5.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for normal regression:
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• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.

5.3 Examples

1. Basic Example with First Differences

Attach sample data:

> data(macro)

Estimate model:

> z.out1 <- zelig(unem ~ gdp + capmob + trade, model = "normal",

+ data = macro)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"normal: Normal Regression for Continuous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Summarize of regression coefficients:

> summary(z.out1)

Call:

glm(formula = formula, weights = weights, family = gaussian,

model = F, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max
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-5.3008 -2.0768 -0.3187 1.9789 7.7715

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 6.181294 0.450572 13.719 < 2e-16 ***

gdp -0.323601 0.062820 -5.151 4.36e-07 ***

capmob 1.421939 0.166443 8.543 4.22e-16 ***

trade 0.019854 0.005606 3.542 0.000452 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for gaussian family taken to be 7.54307)

Null deviance: 3664.8 on 349 degrees of freedom

Residual deviance: 2609.9 on 346 degrees of freedom

AIC: 1706.5

Number of Fisher Scoring iterations: 2

Set explanatory variables to their default (mean/mode) values, with high
(80th percentile) and low (20th percentile) values for trade:

> x.high <- setx(z.out1, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out1, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out1 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out1)

Model: normal

Number of simulations: 1000

Values of X

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 79.10131

attr(,"assign")

[1] 0 1 2 3

Values of X1

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 37.29106

attr(,"assign")

[1] 0 1 2 3

Expected Values: E(Y|X)
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mean sd 50% 2.5% 97.5%

5.432 0.186 5.439 5.039 5.785

Expected Values: E(Y|X1)

mean sd 50% 2.5% 97.5%

4.606 0.189 4.609 4.241 4.969

Predicted Values: Y|X

mean sd 50% 2.5% 97.5%

5.473 2.743 5.456 0.111 11.157

Predicted Values: Y|X1

mean sd 50% 2.5% 97.5%

4.63 2.81 4.573 -0.872 10.194

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

-0.826 0.231 -0.826 -1.276 -0.35

A visual summary of quantities of interest:

> plot(s.out1)
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2. Using Dummy Variables

Estimate a model with a dummy variable for each year and country (see
factors for help with dummy variables). Note that you do not need to cre-
ate dummy variables, as the program will automatically parse the unique
values in the selected variables into dummy variables.

> z.out2 <- zelig(unem ~ gdp + trade + capmob + as.factor(year)

+ + as.factor(country), model = "normal", data = macro)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"normal: Normal Regression for Continuous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Set values for the explanatory variables, using the default mean/mode
variables, with country set to the United States and Japan, respectively:

> ### x.US <- try(setx(z.out2, country = "United States"),silent=T)

> ### x.Japan <- try(setx(z.out2, country = "Japan"),silent=T)

Simulate quantities of interest:

> ### s.out2 <- try(sim(z.out2, x = x.US, x1 = x.Japan), silent=T)

> ###try(summary(s.out2))

5.4 Model

Let Yi be the continuous dependent variable for observation i.

• The stochastic component is described by a univariate normal model with
a vector of means µi and scalar variance σ2:

Yi ∼ Normal(µi, σ
2).

• The systematic component is

µi = xiβ,

where xi is the vector of k explanatory variables and β is the vector of
coefficients.
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5.5 Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the the
stochastic component,

E(Y ) = µi = xiβ,

given a draw of β from its posterior.

• The predicted value (qi$pr) is drawn from the distribution defined by the
set of parameters (µi, σ).

• The first difference (qi$fd) is:

FD = E(Y | x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

5.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "normal",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.
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• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: fitted values. For the normal model, these are iden-
tical to the linear predictors.

– linear.predictors: fitted values. For the normal model, these are
identical to fitted.values.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$pr: the simulated predicted values drawn from the distribution
defined by (µi, σ).

– qi$fd: the simulated first difference in the simulated expected values
for the values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Normal Regression Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.
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Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The normal model is part of the stats package by [14]. Advanced users may
wish to refer to help(glm) and help(family), as well as [13]. Robust standard
errors are implemented via the sandwich package by [16]. Sample data are from
[9].

6 poisson: Poisson Regression for Event Count
Dependent Variables

Use the Poisson regression model if the observations of your dependent variable
represents the number of independent events that occur during a fixed period
of time (see the negative binomial model, Section 4, for over-dispersed event
counts.).

6.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

6.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for poisson regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
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frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.

6.3 Example

Load sample data:

> data(sanction)

Estimate Poisson model:

> z.out <- zelig(num ~ target + coop, model = "poisson", data = sanction)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"poisson: Poisson Regression for Event Count Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)

Call:

glm(formula = formula, weights = weights, family = poisson(),

model = F, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-7.2127 -1.1831 -0.2080 -0.1856 17.6514

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.96772 0.17545 -5.516 3.48e-08 ***

target -0.02102 0.05823 -0.361 0.718

coop 1.21082 0.04662 25.970 < 2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1583.77 on 77 degrees of freedom

Residual deviance: 720.84 on 75 degrees of freedom

AIC: 944.35

Number of Fisher Scoring iterations: 6

Set values for the explanatory variables to their default mean values:
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> x.out <- setx(z.out)

Simulate fitted values:

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Model: poisson

Number of simulations: 1000

Values of X

(Intercept) target coop

1 1 2.141026 1.807692

attr(,"assign")

[1] 0 1 2

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

3.242 0.237 3.232 2.825 3.726

Predicted Values: Y|X

mean sd 50% 2.5% 97.5%

3.311 1.79 3 0 7

> plot(s.out)
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6.4 Model

Let Yi be the number of independent events that occur during a fixed time
period. This variable can take any non-negative integer.

• The Poisson distribution has stochastic component

Yi ∼ Poisson(λi),

where λi is the mean and variance parameter.

• The systematic component is

λi = exp(xiβ),

where xi is the vector of explanatory variables, and β is the vector of
coefficients.

6.5 Quantities of Interest

• The expected value (qi$ev) is the mean of simulations from the stochastic
component,

E(Y ) = λi = exp(xiβ),

given draws of β from its sampling distribution.
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• The predicted value (qi$pr) is a random draw from the poisson distribu-
tion defined by mean λi.

• The first difference in the expected values (qi$fd) is given by:

FD = E(Y |x1)− E(Y | x)

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

6.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "poisson",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS
fit.
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– fitted.values: a vector of the fitted values for the systemic com-
ponent λ.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– zelig.data: the input data frame if save.data = TRUE.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values given the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions
defined by λi.

– qi$fd: the simulated first differences in the expected values given
the specified values of x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Poisson Regression Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

38

http://GKing.harvard.edu/zelig


See also

The poisson model is part of the stats package by [14]. Advanced users may
wish to refer to help(glm) and help(family), as well as [13]. Robust standard
errors are implemented via the sandwich package by [16]. Sample data are from
[12].

7 probit: Probit Regression for Dichotomous
Dependent Variables

Use probit regression to model binary dependent variables specified as a function
of a set of explanatory variables.

7.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out, x1 = NULL)

7.2 Additional Inputs

In addition to the standard inputs, zelig() takes the following additional op-
tions for probit regression:

• robust: defaults to FALSE. If TRUE is selected, zelig() computes robust
standard errors via the sandwich package (see [16]). The default type
of robust standard error is heteroskedastic and autocorrelation consistent
(HAC), and assumes that observations are ordered by time index.

In addition, robust may be a list with the following options:

– method: Choose from

∗ "vcovHAC": (default if robust = TRUE) HAC standard errors.

∗ "kernHAC": HAC standard errors using the weights given in [1].

∗ "weave": HAC standard errors using the weights given in [11].

– order.by: defaults to NULL (the observations are chronologically or-
dered as in the original data). Optionally, you may specify a vector
of weights (either as order.by = z, where z exists outside the data
frame; or as order.by = ~z, where z is a variable in the data frame).
The observations are chronologically ordered by the size of z.

– ...: additional options passed to the functions specified in method.
See the sandwich library and [16] for more options.
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7.3 Examples

Attach the sample turnout dataset:

> data(turnout)

Estimate parameter values for the probit regression:

> z.out <- zelig(vote ~ race + educate, model = "probit", data = turnout)

How to cite this model in Zelig:

Kosuke Imai, Gary King, and Olivia Lau. 2013.

"probit: Probit Regression for Dichotomous Dependent Variables"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)

Call:

glm(formula = formula, weights = weights, family = binomial(link = "probit"),

model = F, data = data)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.2586 -0.8982 0.6712 0.7232 1.7045

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.725949 0.128635 -5.643 1.67e-08 ***

racewhite 0.299076 0.084648 3.533 0.000411 ***

educate 0.097119 0.009571 10.147 < 2e-16 ***

---

Signif. codes: 0 âĂŸ***âĂŹ 0.001 âĂŸ**âĂŹ 0.01 âĂŸ*âĂŹ 0.05 âĂŸ.âĂŹ 0.1 âĂŸ âĂŹ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 2266.7 on 1999 degrees of freedom

Residual deviance: 2136.0 on 1997 degrees of freedom

AIC: 2142

Number of Fisher Scoring iterations: 4

Set values for the explanatory variables to their default values.

> x.out <- setx(z.out)

Simulate quantities of interest from the posterior distribution.

> s.out <- sim(z.out, x = x.out)
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> summary(s.out)

Model: probit

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 12.06675

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values: E(Y|X)

mean sd 50% 2.5% 97.5%

0.772 0.011 0.772 0.75 0.792

Predicted Values: Y|X

0 1

0.222 0.778

7.4 Model

Let Yi be the observed binary dependent variable for observation i which takes
the value of either 0 or 1.

• The stochastic component is given by

Yi ∼ Bernoulli(πi),

where πi = Pr(Yi = 1).

• The systematic component is

πi = Φ(xiβ)

where Φ(µ) is the cumulative distribution function of the Normal distri-
bution with mean 0 and unit variance.

7.5 Quantities of Interest

• The expected value (qi$ev) is a simulation of predicted probability of
success

E(Y ) = πi = Φ(xiβ),

given a draw of β from its sampling distribution.
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• The predicted value (qi$pr) is a draw from a Bernoulli distribution with
mean πi.

• The first difference (qi$fd) in expected values is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1)/Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{Yi(ti = 1)− E[Yi(ti = 0)]} ,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yi(ti = 0)], the counterfactual expected value
of Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

• In conditional prediction models, the average predicted treatment effect
(att.pr) for the treatment group is

1∑n
i=1 ti

n∑
i:ti=1

{
Yi(ti = 1)− ̂Yi(ti = 0)

}
,

where ti is a binary explanatory variable defining the treatment (ti = 1)
and control (ti = 0) groups. Variation in the simulations are due to

uncertainty in simulating ̂Yi(ti = 0), the counterfactual predicted value of
Yi for observations in the treatment group, under the assumption that
everything stays the same except that the treatment indicator is switched
to ti = 0.

7.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "probit",

data), then you may examine the available information in z.out by using
names(z.out), see the coefficients by using z.out$coefficients, and a de-
fault summary of information through summary(z.out). Other elements avail-
able through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:
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– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the IWLS
fit.

– fitted.values: a vector of the in-sample fitted values.

– linear.predictors: a vector of xiβ.

– aic: Akaike’s Information Criterion (minus twice the maximized log-
likelihood plus twice the number of coefficients).

– df.residual: the residual degrees of freedom.

– df.null: the residual degrees of freedom for the null model.

– data: the name of the input data frame.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and t-statistics.

– cov.scaled: a k × k matrix of scaled covariances.

– cov.unscaled: a k × k matrix of unscaled covariances.

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values, or predicted probabilities, for
the specified values of x.

– qi$pr: the simulated predicted values drawn from the distributions
defined by the predicted probabilities.

– qi$fd: the simulated first differences in the predicted probabilities
for the values specified in x and x1.

– qi$rr: the simulated risk ratio for the predicted probabilities simu-
lated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

– qi$att.pr: the simulated average predicted treatment effect for the
treated from conditional prediction models.

How to Cite the Logit Model

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.
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Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The probit model is part of the stats package by [14]. Advanced users may
wish to refer to help(glm) and help(family), as well as [13]. Robust standard
errors are implemented via the sandwich package by [16]. Sample data are from
[9].
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