
1 gamma.gee: Generalized Estimating Equation
for Gamma Regression

The GEE gamma is similar to standard gamma regression (appropriate when
you have an uncensored, positive-valued, continuous dependent variable such
as the time until a parliamentary cabinet falls). Unlike in gamma regression,
GEE gamma allows for dependence within clusters, such as in longitudinal data,
although its use is not limited to just panel data. GEE models make no distribu-
tional assumptions but require three specifications: a mean function, a variance
function, and a “working” correlation matrix for the clusters, which models the
dependence of each observation with other observations in the same cluster.
The “working” correlation matrix is a T × T matrix of correlations, where T
is the size of the largest cluster and the elements of the matrix are correla-
tions between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the
standard errors can be obtained using a robust “sandwich” estimator even if the
“working”correlation matrix is incorrectly specified. If the“working”correlation
matrix is correctly specified, GEE models will give more efficient estimates of
the parameters. GEE models measure population-averaged effects as opposed
to cluster-specific effects (See (author?) [4]).

1.0.1 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "gamma.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted
by id and should be ordered within each cluster when appropriate.

1.0.2 Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated
using a “sandwich” estimator.

Use the following arguments to specify the structure of the“working”correlations
within clusters:

• corstr: defaults to "independence". It can take on the following argu-
ments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′
with t 6= t′. It assumes that there is no correlation within the clusters
and the model becomes equivalent to standard gamma regression.
The “working” correlation matrix is the identity matrix.
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– Fixed (corstr = "fixed"): If selected, the user must define the
“working” correlation matrix with the R argument rather than es-
timating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where
m is the number of periods t of dependence. Choose this option when
the correlations are assumed to be the same for observations of the
same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m,
wherem is the number of periods t of dependence. This option relaxes
the assumption that the correlations are the same for all observations
of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence
(Mv=2)

1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′

with t 6= t′. Choose this option if the correlations are assumed to be
the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1
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– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr
= "AR-M"), you must also specify Mv = m, where m is the number
of periods t of dependence. For example, the first order autoregres-
sive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′.
In AR-1, observation 1 and observation 2 have a correlation of α.
Observation 2 and observation 3 also have a correlation of α. Ob-
servation 1 and observation 3 have a correlation of α2, which is a
function of how 1 and 2 are correlated (α) multiplied by how 2 and
3 are correlated (α). Observation 1 and 4 have a correlation that is
a function of the correlation between 1 and 2, 2 and 3, and 3 and 4,
and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′

with t 6= t′. No constraints are placed on the correlations, which are
then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only
needs to be specified when corstr is "stat_M_dep", "non_stat_M_dep",
or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather
than estimating it from the data. The argument is used only when corstr

is "fixed". The input is a T × T matrix of correlations, where T is the
size of the largest cluster.

1.0.3 Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(coalition)

Sorted variable identifying clusters

> coalition$cluster <- c(rep(c(1:62),5),rep(c(63),4))

> sorted.coalition <- coalition[order(coalition$cluster),]

Estimating model and presenting summary:

> z.out <- zelig(duration ~ fract + numst2, model = "gamma.gee", id = "cluster", data = sorted.coalition, robust=TRUE, corstr="exchangeable")
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(Intercept) fract numst2

-0.0129597411 0.0001148931 -0.0173874664

How to cite this model in Zelig:

Patrick Lam. 2013.

"gamma.gee: General Estimating Equation for Gamma Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Reciprocal

Variance to Mean Relation: Gamma

Correlation Structure: Exchangeable

Call:

gee(formula = formula, id = id, corstr = corstr, family = Gamma,

data = data, .hook = robust.gee.hook)

Summary of Residuals:

Min 1Q Median 3Q Max

-51.662849 -10.922635 -3.338295 9.384375 33.481595

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.0129634095 1.328203e-02 -0.9760113 0.0126829873 -1.022110

fract 0.0001149138 1.719796e-05 6.6818299 0.0000147418 7.795104

numst2 -0.0174009000 5.886821e-03 -2.9559076 0.0062943755 -2.764516

Estimated Scale Parameter: 0.6291527

Number of Iterations: 1

Working Correlation

[,1] [,2] [,3] [,4] [,5]

[1,] 1.000000000 -0.008042939 -0.008042939 -0.008042939 -0.008042939

[2,] -0.008042939 1.000000000 -0.008042939 -0.008042939 -0.008042939

[3,] -0.008042939 -0.008042939 1.000000000 -0.008042939 -0.008042939

[4,] -0.008042939 -0.008042939 -0.008042939 1.000000000 -0.008042939

[5,] -0.008042939 -0.008042939 -0.008042939 -0.008042939 1.000000000

Setting the explanatory variables at their default values (mode for factor
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variables and mean for non-factor variables), with numst2 set to the vector
0 = no crisis, 1 = crisis.

> x.low <- setx(z.out, numst2 = 0)

> x.high <- setx(z.out, numst2 = 1)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.low, x1 = x.high)

> summary(s.out)

Model: gamma.gee

Number of simulations: 1000

Values of X

(Intercept) fract numst2

1 1 718.8121 0

attr(,"assign")

[1] 0 1 2

Values of X1

(Intercept) fract numst2

1 1 718.8121 1

attr(,"assign")

[1] 0 1 2

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

14.383 1.064 14.331 12.461 16.614

Expected Values (for x1): E(Y|X1)

mean sd 50% 2.5% 97.5%

19.195 1.081 19.183 17.25 21.463

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

4.811 1.556 4.788 1.855 7.877

Generate a plot of quantities of interest:

> plot(s.out)
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1.0.4 The Model

Suppose we have a panel dataset, with Yit denoting the positive-valued, continu-
ous dependent variable for unit i at time t. Yi is a vector or cluster of correlated
data where yit is correlated with yit′ for some or all t, t′. Note that the model
assumes correlations within i but independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)
Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE
models make no distributional assumptions and only require three specifi-
cations: a mean function, a variance function, and a correlation structure.

• The systematic component is the mean function, given by:

λit =
1

xitβ

where xit is the vector of k explanatory variables for unit i at time t and
β is the vector of coefficients.
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• The variance function is given by:

Vit = λ2it =
1

(xitβ)2

• The correlation structure is defined by a T × T “working” correlation ma-
trix, where T is the size of the largest cluster. Users must specify the
structure of the “working” correlation matrix a priori. The “working” cor-
relation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λ2it
as the tth diagonal element, Ri(α) is the “working” correlation matrix,
and φ is a scale parameter. The parameters are then estimated via a
quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and
correlation structure are incorrectly specified, then GEE models provide
consistent estimates of the parameters and thus the mean function as
well, while consistent estimates of the standard errors can be obtained via
a robust “sandwich” estimator. Similarly, if the mean and variance are
correctly specified but the correlation structure is incorrectly specified,
the parameters can be estimated consistently and the standard errors can
be estimated consistently with the sandwich estimator. If all three are
specified correctly, then the estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard
errors when the correlations are specified incorrectly only if the number of
units i is relatively large and the number of repeated periods t is relatively
small. Otherwise, one should use the “näıve” model-based standard errors,
which assume that the specified correlations are close approximations to
the true underlying correlations. See ? ] for more details.

1.0.5 Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE mod-
els. If you must bootstrap, bootstrapping should be done within clusters,
which is not currently supported in Zelig. For conditional prediction mod-
els, data should be matched within clusters.

• The expected values (qi$ev) for the GEE gamma model is the mean:

E(Y ) = λc =
1

xcβ
,

given draws of β from its sampling distribution, where xc is a vector of
values, one for each independent variable, chosen by the user.
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• The first difference (qi$fd) for the GEE gamma model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1)
and control (trit = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yit(trit = 0)], the counterfactual expected
value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is
switched to trit = 0.

1.0.6 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "gamma.gee",

id, data), then you may examine the available information in z.out by us-
ing names(z.out), see the coefficients by using z.out$coefficients, and
a default summary of information through summary(z.out). Other elements
available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.
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– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How To Cite the gamma.gee Zelig model

Patrick Lam. 2007. “gamma.gee: Generalized Estimating Equa-
tion for Gamma Regression,” in Kosuke Imai, Gary King, and
Olivia Lau, “Zelig: Everyone’s Statistical Software,” http://

gking.harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R
by Thomas Lumley and Brian Ripley. Advanced users may wish to refer to
help(gee) and help(family). Sample data are from [1].

2 logit.gee: Generalized Estimating Equation
for Logistic Regression

The GEE logit estimates the same model as the standard logistic regression
(appropriate when you have a dichotomous dependent variable and a set of
explanatory variables). Unlike in logistic regression, GEE logit allows for de-
pendence within clusters, such as in longitudinal data, although its use is not
limited to just panel data. The user must first specify a “working” correla-
tion matrix for the clusters, which models the dependence of each observation
with other observations in the same cluster. The “working” correlation matrix
is a T × T matrix of correlations, where T is the size of the largest cluster
and the elements of the matrix are correlations between within-cluster obser-
vations. The appeal of GEE models is that it gives consistent estimates of the
parameters and consistent estimates of the standard errors can be obtained us-
ing a robust “sandwich” estimator even if the “working” correlation matrix is
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incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models
measure population-averaged effects as opposed to cluster-specific effects (See
(author?) [4]).

2.0.7 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "logit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted
by id and should be ordered within each cluster when appropriate.

2.0.8 Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated
using a “sandwich” estimator.

Use the following arguments to specify the structure of the“working”correlations
within clusters:

• corstr: defaults to "independence". It can take on the following argu-
ments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′
with t 6= t′. It assumes that there is no correlation within the clusters
and the model becomes equivalent to standard logistic regression.
The “working” correlation matrix is the identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the
“working” correlation matrix with the R argument rather than es-
timating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where
m is the number of periods t of dependence. Choose this option when
the correlations are assumed to be the same for observations of the
same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1
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– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m,
wherem is the number of periods t of dependence. This option relaxes
the assumption that the correlations are the same for all observations
of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence
(Mv=2)

1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′

with t 6= t′. Choose this option if the correlations are assumed to be
the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr

= "AR-M"), you must also specify Mv = m, where m is the number
of periods t of dependence. For example, the first order autoregres-
sive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′.
In AR-1, observation 1 and observation 2 have a correlation of α.
Observation 2 and observation 3 also have a correlation of α. Ob-
servation 1 and observation 3 have a correlation of α2, which is a
function of how 1 and 2 are correlated (α) multiplied by how 2 and
3 are correlated (α). Observation 1 and 4 have a correlation that is
a function of the correlation between 1 and 2, 2 and 3, and 3 and 4,
and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1
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– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′
with t 6= t′. No constraints are placed on the correlations, which are
then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only
needs to be specified when corstr is "stat_M_dep", "non_stat_M_dep",
or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather
than estimating it from the data. The argument is used only when corstr

is "fixed". The input is a T × T matrix of correlations, where T is the
size of the largest cluster.

2.0.9 Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200),10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster),]

Estimating parameter values for the logistic regression:

> z.out1 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3)

(Intercept) racewhite educate

-1.2189037 0.5022257 0.1610007

How to cite this model in Zelig:

Patrick Lam. 2013.

"logit.gee: General Estimating Equation for Logistic Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)
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Model: logit.gee

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 12.06675

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

0.773 0.012 0.773 0.75 0.795

> plot(s.out1)

0.74 0.76 0.78 0.80
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N = 1000   Bandwidth = 0.002386
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th
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percentile) and high education (75th percentile) while all the other vari-
ables held at their default values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

Model: logit.gee

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 14

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Values of X1

(Intercept) racewhite educate

1 1 1 10

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

0.822 0.01 0.822 0.801 0.843

Expected Values (for x1): E(Y|X1)

mean sd 50% 2.5% 97.5%

0.709 0.015 0.709 0.679 0.738

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

-0.113 0.012 -0.113 -0.138 -0.09

Risk Ratios: E(Y|X1)/E(Y|X)
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mean sd 50% 2.5% 97.5%

0.862 0.014 0.862 0.833 0.891

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure

> corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "logit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat)

(Intercept) racewhite educate

-1.2189037 0.5022257 0.1610007

How to cite this model in Zelig:

Patrick Lam. 2013.

"logit.gee: General Estimating Equation for Logistic Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig
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Viewing the regression output:

> summary(z.out2)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logit

Variance to Mean Relation: Binomial

Correlation Structure: Fixed

Call:

gee(formula = formula, id = id, corstr = corstr, family = binomial(link = "logit"),

data = data, R = R, .hook = robust.gee.hook)

Summary of Residuals:

Min 1Q Median 3Q Max

-0.9067826 -0.3018991 0.2112738 0.2390951 0.7887027

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -1.3171233 0.16878117 -7.803733 0.22423028 -5.873976

racewhite 0.5593612 0.10125663 5.524193 0.14572484 3.838475

educate 0.1596174 0.01220733 13.075544 0.01657297 9.631189

Estimated Scale Parameter: 0.9574347

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[2,] 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[3,] 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[4,] 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5

[5,] 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5

[6,] 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5

[7,] 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5

[8,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5

[9,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5

[10,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

2.0.10 The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent vari-
able for unit i at time t. Yi is a vector or cluster of correlated data where
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yit is correlated with yit′ for some or all t, t′. Note that the model assumes
correlations within i but independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)
Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE
models make no distributional assumptions and only require three specifi-
cations: a mean function, a variance function, and a correlation structure.

• The systematic component is the mean function, given by:

πit =
1

1 + exp(−xitβ)

where xit is the vector of k explanatory variables for unit i at time t and
β is the vector of coefficients.

• The variance function is given by:

Vit = πit(1− πit)

• The correlation structure is defined by a T × T “working” correlation ma-
trix, where T is the size of the largest cluster. Users must specify the
structure of the “working” correlation matrix a priori. The “working” cor-
relation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit =
πit(1−πit) as the tth diagonal element, Ri(α) is the “working” correlation
matrix, and φ is a scale parameter. The parameters are then estimated
via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and
correlation structure are incorrectly specified, then GEE models provide
consistent estimates of the parameters and thus the mean function as
well, while consistent estimates of the standard errors can be obtained via
a robust “sandwich” estimator. Similarly, if the mean and variance are
correctly specified but the correlation structure is incorrectly specified,
the parameters can be estimated consistently and the standard errors can
be estimated consistently with the sandwich estimator. If all three are
specified correctly, then the estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard
errors when the correlations are specified incorrectly only if the number of
units i is relatively large and the number of repeated periods t is relatively
small. Otherwise, one should use the “näıve” model-based standard errors,
which assume that the specified correlations are close approximations to
the true underlying correlations. See ? ] for more details.
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2.0.11 Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE mod-
els. If you must bootstrap, bootstrapping should be done within clusters,
which is not currently supported in Zelig. For conditional prediction mod-
els, data should be matched within clusters.

• The expected values (qi$ev) for the GEE logit model are simulations of
the predicted probability of a success:

E(Y ) = πc =
1

1 + exp(−xcβ)
,

given draws of β from its sampling distribution, where xc is a vector of
values, one for each independent variable, chosen by the user.

• The first difference (qi$fd) for the GEE logit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1)
and control (trit = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yit(trit = 0)], the counterfactual expected
value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is
switched to trit = 0.

2.0.12 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "logit.gee",

id, data), then you may examine the available information in z.out by us-
ing names(z.out), see the coefficients by using z.out$coefficients, and
a default summary of information through summary(z.out). Other elements
available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:
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– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values
of x.

– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simu-
lated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How To Cite the logit.gee Zelig Model

Patrick Lam. 2007. “logit.gee: Generalized Estimating Equation
for Logit Regression,” in Kosuke Imai, Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.

harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.
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See also

The gee function is part of the gee package by Vincent J. Carey, ported to R
by Thomas Lumley and Brian Ripley. Advanced users may wish to refer to
help(gee) and help(family). Sample data are from [2].

3 normal.gee: Generalized Estimating Equation
for Normal Regression

The GEE normal estimates the same model as the standard normal regression.
Unlike in normal regression, GEE normal allows for dependence within clusters,
such as in longitudinal data, although its use is not limited to just panel data.
The user must first specify a “working” correlation matrix for the clusters, which
models the dependence of each observation with other observations in the same
cluster. The “working” correlation matrix is a T × T matrix of correlations,
where T is the size of the largest cluster and the elements of the matrix are
correlations between within-cluster observations. The appeal of GEE models is
that it gives consistent estimates of the parameters and consistent estimates of
the standard errors can be obtained using a robust “sandwich” estimator even
if the “working” correlation matrix is incorrectly specified. If the “working”
correlation matrix is correctly specified, GEE models will give more efficient
estimates of the parameters. GEE models measure population-averaged effects
as opposed to cluster-specific effects (See (author?) [4]).

3.0.13 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "normal.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted
by id and should be ordered within each cluster when appropriate.

3.0.14 Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated
using a “sandwich” estimator.

Use the following arguments to specify the structure of the“working”correlations
within clusters:

• corstr: defaults to "independence". It can take on the following argu-
ments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′
with t 6= t′. It assumes that there is no correlation within the clusters
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and the model becomes equivalent to standard normal regression.
The “working” correlation matrix is the identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the
“working” correlation matrix with the R argument rather than es-
timating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where
m is the number of periods t of dependence. Choose this option when
the correlations are assumed to be the same for observations of the
same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m,
wherem is the number of periods t of dependence. This option relaxes
the assumption that the correlations are the same for all observations
of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence
(Mv=2)

1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′

with t 6= t′. Choose this option if the correlations are assumed to be
the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
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1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr

= "AR-M"), you must also specify Mv = m, where m is the number
of periods t of dependence. For example, the first order autoregres-
sive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′.
In AR-1, observation 1 and observation 2 have a correlation of α.
Observation 2 and observation 3 also have a correlation of α. Ob-
servation 1 and observation 3 have a correlation of α2, which is a
function of how 1 and 2 are correlated (α) multiplied by how 2 and
3 are correlated (α). Observation 1 and 4 have a correlation that is
a function of the correlation between 1 and 2, 2 and 3, and 3 and 4,
and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′

with t 6= t′. No constraints are placed on the correlations, which are
then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only
needs to be specified when corstr is "stat_M_dep", "non_stat_M_dep",
or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather
than estimating it from the data. The argument is used only when corstr

is "fixed". The input is a T × T matrix of correlations, where T is the
size of the largest cluster.

3.0.15 Examples

1. Example with AR-1 Dependence

Attaching the sample turnout dataset:

> data(macro)

Estimating model and presenting summary:

> z.out <- zelig(unem ~ gdp + capmob + trade, model = "normal.gee", id = "country", data = macro, robust=TRUE, corstr="AR-M", Mv=1)
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(Intercept) gdp capmob trade

6.18129445 -0.32360059 1.42193926 0.01985421

How to cite this model in Zelig:

Patrick Lam. 2013.

"normal.gee: General Estimating Equation for Normal Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Identity

Variance to Mean Relation: Gaussian

Correlation Structure: AR-M , M = 1

Call:

gee(formula = formula, id = id, corstr = corstr, family = gaussian(),

R = R, data = data, Mv = 1, .hook = robust.gee.hook)

Summary of Residuals:

Min 1Q Median 3Q Max

-3.8177474 -1.9082221 0.1124818 2.8287233 8.0261275

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) 3.96818567 0.912532716 4.348541 0.77474335 5.121936

gdp -0.06553926 0.016222536 -4.040013 0.01737177 -3.772744

capmob 0.33382352 0.125003704 2.670509 0.16212556 2.059043

trade 0.01616045 0.009822323 1.645278 0.01102485 1.465820

Estimated Scale Parameter: 9.512685

Number of Iterations: 4

Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024

[2,] 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615

[3,] 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103

[4,] 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731

[5,] 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749
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[6,] 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417

[7,] 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000

[8,] 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417

[9,] 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749

[10,] 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731

[11,] 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103

[12,] 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615

[13,] 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024

[14,] 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095

[15,] 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598

[16,] 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312

[17,] 0.6156910 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021

[18,] 0.5973075 0.6156910 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517

[19,] 0.5794730 0.5973075 0.6156910 0.6346403 0.6541728 0.6743064 0.6950597

[20,] 0.5621709 0.5794730 0.5973075 0.6156910 0.6346403 0.6541728 0.6743064

[21,] 0.5453854 0.5621709 0.5794730 0.5973075 0.6156910 0.6346403 0.6541728

[22,] 0.5291011 0.5453854 0.5621709 0.5794730 0.5973075 0.6156910 0.6346403

[23,] 0.5133031 0.5291011 0.5453854 0.5621709 0.5794730 0.5973075 0.6156910

[24,] 0.4979767 0.5133031 0.5291011 0.5453854 0.5621709 0.5794730 0.5973075

[25,] 0.4831080 0.4979767 0.5133031 0.5291011 0.5453854 0.5621709 0.5794730

[,8] [,9] [,10] [,11] [,12] [,13] [,14]

[1,] 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517 0.6950597 0.6743064

[2,] 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517 0.6950597

[3,] 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517

[4,] 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021

[5,] 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312

[6,] 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598

[7,] 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095

[8,] 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024

[9,] 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615

[10,] 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103

[11,] 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731

[12,] 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749

[13,] 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417

[14,] 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000

[15,] 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417

[16,] 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749

[17,] 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731

[18,] 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103

[19,] 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615

[20,] 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024

[21,] 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598 0.8088095

[22,] 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312 0.7846598

[23,] 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021 0.7612312

[24,] 0.6156910 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517 0.7385021

[25,] 0.5973075 0.6156910 0.6346403 0.6541728 0.6743064 0.6950597 0.7164517
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[,15] [,16] [,17] [,18] [,19] [,20] [,21]

[1,] 0.6541728 0.6346403 0.6156910 0.5973075 0.5794730 0.5621709 0.5453854

[2,] 0.6743064 0.6541728 0.6346403 0.6156910 0.5973075 0.5794730 0.5621709

[3,] 0.6950597 0.6743064 0.6541728 0.6346403 0.6156910 0.5973075 0.5794730

[4,] 0.7164517 0.6950597 0.6743064 0.6541728 0.6346403 0.6156910 0.5973075

[5,] 0.7385021 0.7164517 0.6950597 0.6743064 0.6541728 0.6346403 0.6156910

[6,] 0.7612312 0.7385021 0.7164517 0.6950597 0.6743064 0.6541728 0.6346403

[7,] 0.7846598 0.7612312 0.7385021 0.7164517 0.6950597 0.6743064 0.6541728

[8,] 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517 0.6950597 0.6743064

[9,] 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517 0.6950597

[10,] 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021 0.7164517

[11,] 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312 0.7385021

[12,] 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598 0.7612312

[13,] 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095 0.7846598

[14,] 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024 0.8088095

[15,] 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615 0.8337024

[16,] 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103 0.8593615

[17,] 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731 0.8858103

[18,] 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749 0.9130731

[19,] 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417 0.9411749

[20,] 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000 0.9701417

[21,] 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417 1.0000000

[22,] 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749 0.9701417

[23,] 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731 0.9411749

[24,] 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103 0.9130731

[25,] 0.7385021 0.7612312 0.7846598 0.8088095 0.8337024 0.8593615 0.8858103

[,22] [,23] [,24] [,25]

[1,] 0.5291011 0.5133031 0.4979767 0.4831080

[2,] 0.5453854 0.5291011 0.5133031 0.4979767

[3,] 0.5621709 0.5453854 0.5291011 0.5133031

[4,] 0.5794730 0.5621709 0.5453854 0.5291011

[5,] 0.5973075 0.5794730 0.5621709 0.5453854

[6,] 0.6156910 0.5973075 0.5794730 0.5621709

[7,] 0.6346403 0.6156910 0.5973075 0.5794730

[8,] 0.6541728 0.6346403 0.6156910 0.5973075

[9,] 0.6743064 0.6541728 0.6346403 0.6156910

[10,] 0.6950597 0.6743064 0.6541728 0.6346403

[11,] 0.7164517 0.6950597 0.6743064 0.6541728

[12,] 0.7385021 0.7164517 0.6950597 0.6743064

[13,] 0.7612312 0.7385021 0.7164517 0.6950597

[14,] 0.7846598 0.7612312 0.7385021 0.7164517

[15,] 0.8088095 0.7846598 0.7612312 0.7385021

[16,] 0.8337024 0.8088095 0.7846598 0.7612312

[17,] 0.8593615 0.8337024 0.8088095 0.7846598

[18,] 0.8858103 0.8593615 0.8337024 0.8088095

[19,] 0.9130731 0.8858103 0.8593615 0.8337024
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[20,] 0.9411749 0.9130731 0.8858103 0.8593615

[21,] 0.9701417 0.9411749 0.9130731 0.8858103

[22,] 1.0000000 0.9701417 0.9411749 0.9130731

[23,] 0.9701417 1.0000000 0.9701417 0.9411749

[24,] 0.9411749 0.9701417 1.0000000 0.9701417

[25,] 0.9130731 0.9411749 0.9701417 1.0000000

Set explanatory variables to their default (mean/mode) values, with high
(80th percentile) and low (20th percentile) values:

> x.high <- setx(z.out, trade = quantile(macro$trade, 0.8))

> x.low <- setx(z.out, trade = quantile(macro$trade, 0.2))

Generate first differences for the effect of high versus low trade on GDP:

> s.out <- sim(z.out, x = x.high, x1 = x.low)

> summary(s.out)

Model: normal.gee

Number of simulations: 1000

Values of X

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 79.10131

attr(,"assign")

[1] 0 1 2 3

Values of X1

(Intercept) gdp capmob trade

1 1 3.254223 -0.8914286 37.29106

attr(,"assign")

[1] 0 1 2 3

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

4.717 0.548 4.695 3.648 5.765

Expected Values (for x1): E(Y|X1)

mean sd 50% 2.5% 97.5%

4.059 0.52 4.054 3.007 5.11

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

-0.658 0.435 -0.659 -1.513 0.135

Generate a plot of quantities of interest:
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> plot(s.out)
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3.0.16 The Model

Suppose we have a panel dataset, with Yit denoting the continuous dependent
variable for unit i at time t. Yi is a vector or cluster of correlated data where
yit is correlated with yit′ for some or all t, t′. Note that the model assumes
correlations within i but independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | µi)

Yit ∼ g(yit | µit)

where f and g are unspecified distributions with means µi and µit. GEE
models make no distributional assumptions and only require three specifi-
cations: a mean function, a variance function, and a correlation structure.

• The systematic component is the mean function, given by:

µit = xitβ

where xit is the vector of k explanatory variables for unit i at time t and
β is the vector of coefficients.
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• The variance function is given by:

Vit = 1

• The correlation structure is defined by a T × T “working” correlation ma-
trix, where T is the size of the largest cluster. Users must specify the
structure of the “working” correlation matrix a priori. The “working” cor-
relation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = 1
as the tth diagonal element (in the case of GEE normal, Ai is the identity
matrix), Ri(α) is the “working” correlation matrix, and φ is a scale param-
eter. The parameters are then estimated via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and
correlation structure are incorrectly specified, then GEE models provide
consistent estimates of the parameters and thus the mean function as
well, while consistent estimates of the standard errors can be obtained via
a robust “sandwich” estimator. Similarly, if the mean and variance are
correctly specified but the correlation structure is incorrectly specified,
the parameters can be estimated consistently and the standard errors can
be estimated consistently with the sandwich estimator. If all three are
specified correctly, then the estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard
errors when the correlations are specified incorrectly only if the number of
units i is relatively large and the number of repeated periods t is relatively
small. Otherwise, one should use the “näıve” model-based standard errors,
which assume that the specified correlations are close approximations to
the true underlying correlations. See ? ] for more details.

3.0.17 Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE mod-
els. If you must bootstrap, bootstrapping should be done within clusters,
which is not currently supported in Zelig. For conditional prediction mod-
els, data should be matched within clusters.

• The expected values (qi$ev) for the GEE normal model is the mean of
simulations from the stochastic component:

E(Y ) = µc = xcβ,

given draws of β from its sampling distribution, where xc is a vector of
values, one for each independent variable, chosen by the user.
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• The first difference (qi$fd) for the GEE normal model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1)
and control (trit = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yit(trit = 0)], the counterfactual expected
value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is
switched to trit = 0.

3.0.18 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "normal.gee",

id, data), then you may examine the available information in z.out by us-
ing names(z.out), see the coefficients by using z.out$coefficients, and
a default summary of information through summary(z.out). Other elements
available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent, µit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.
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– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How To Cite the normal.gee Zelig model

Patrick Lam. 2007. “normal.gee: Generalized Estimating Equa-
tion for Normal Regression,” in Kosuke Imai, Gary King, and
Olivia Lau, “Zelig: Everyone’s Statistical Software,” http://

gking.harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

4 poisson.gee: Generalized Estimating Equation
for Poisson Regression

The GEE poisson estimates the same model as the standard poisson regres-
sion (appropriate when your dependent variable represents the number of in-
dependent events that occur during a fixed period of time). Unlike in poisson
regression, GEE poisson allows for dependence within clusters, such as in lon-
gitudinal data, although its use is not limited to just panel data. The user
must first specify a “working” correlation matrix for the clusters, which models
the dependence of each observation with other observations in the same clus-
ter. The “working” correlation matrix is a T × T matrix of correlations, where
T is the size of the largest cluster and the elements of the matrix are correla-
tions between within-cluster observations. The appeal of GEE models is that
it gives consistent estimates of the parameters and consistent estimates of the
standard errors can be obtained using a robust “sandwich” estimator even if the
“working”correlation matrix is incorrectly specified. If the“working”correlation
matrix is correctly specified, GEE models will give more efficient estimates of
the parameters. GEE models measure population-averaged effects as opposed
to cluster-specific effects (See (author?) [4]).
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4.0.19 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "poisson.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted
by id and should be ordered within each cluster when appropriate.

4.0.20 Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated
using a “sandwich” estimator.

Use the following arguments to specify the structure of the“working”correlations
within clusters:

• corstr: defaults to "independence". It can take on the following argu-
ments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′
with t 6= t′. It assumes that there is no correlation within the clusters
and the model becomes equivalent to standard poisson regression.
The “working” correlation matrix is the identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the
“working” correlation matrix with the R argument rather than es-
timating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where
m is the number of periods t of dependence. Choose this option when
the correlations are assumed to be the same for observations of the
same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1
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– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m,
wherem is the number of periods t of dependence. This option relaxes
the assumption that the correlations are the same for all observations
of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence
(Mv=2)

1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′

with t 6= t′. Choose this option if the correlations are assumed to be
the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr

= "AR-M"), you must also specify Mv = m, where m is the number
of periods t of dependence. For example, the first order autoregres-
sive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′.
In AR-1, observation 1 and observation 2 have a correlation of α.
Observation 2 and observation 3 also have a correlation of α. Ob-
servation 1 and observation 3 have a correlation of α2, which is a
function of how 1 and 2 are correlated (α) multiplied by how 2 and
3 are correlated (α). Observation 1 and 4 have a correlation that is
a function of the correlation between 1 and 2, 2 and 3, and 3 and 4,
and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1
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– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′
with t 6= t′. No constraints are placed on the correlations, which are
then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only
needs to be specified when corstr is "stat_M_dep", "non_stat_M_dep",
or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather
than estimating it from the data. The argument is used only when corstr

is "fixed". The input is a T × T matrix of correlations, where T is the
size of the largest cluster.

4.0.21 Examples

1. Example with Exchangeable Dependence

Attaching the sample turnout dataset:

> data(sanction)

Variable identifying clusters

> sanction$cluster <- c(rep(c(1:15),5),rep(c(16),3))

Sorting by cluster

> sorted.sanction <- sanction[order(sanction$cluster),]

Estimating model and presenting summary:

> z.out <- zelig(num ~ target + coop, model = "poisson.gee", id = "cluster", data = sorted.sanction, robust=TRUE, corstr="exchangeable")

(Intercept) target coop

-0.96771994 -0.02102351 1.21081908

How to cite this model in Zelig:

Patrick Lam. 2013.

"poisson.gee: General Estimating Equation for Poisson Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

> summary(z.out)

GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Logarithm
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Variance to Mean Relation: Poisson

Correlation Structure: Exchangeable

Call:

gee(formula = formula, id = id, corstr = corstr, family = poisson(),

data = data, R = R, .hook = robust.gee.hook)

Summary of Residuals:

Min 1Q Median 3Q Max

-39.1944672 -2.1913793 -0.2236836 -0.2047618 106.5134108

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.96680028 0.7196563 -1.3434195 0.4550626 -2.12454341

target -0.02083277 0.2413024 -0.0863347 0.3341394 -0.06234754

coop 1.21033147 0.1914327 6.3224910 0.2631640 4.59915320

Estimated Scale Parameter: 17.10881

Number of Iterations: 2

Working Correlation

[,1] [,2] [,3] [,4] [,5]

[1,] 1.00000000 -0.01180279 -0.01180279 -0.01180279 -0.01180279

[2,] -0.01180279 1.00000000 -0.01180279 -0.01180279 -0.01180279

[3,] -0.01180279 -0.01180279 1.00000000 -0.01180279 -0.01180279

[4,] -0.01180279 -0.01180279 -0.01180279 1.00000000 -0.01180279

[5,] -0.01180279 -0.01180279 -0.01180279 -0.01180279 1.00000000

Set explanatory variables to their default values:

> x.out <- setx(z.out)

Simulate quantities of interest

> s.out <- sim(z.out, x = x.out)

> summary(s.out)

Model: poisson.gee

Number of simulations: 1000

Values of X

(Intercept) target coop

1 1 2.141026 1.807692

attr(,"assign")

[1] 0 1 2
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Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

0.897 0.231 0.853 0.598 1.526

Generate a plot of quantities of interest:

> plot(s.out)
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4.0.22 The Model

Suppose we have a panel dataset, with Yit denoting the dependent variable of
the number of independent events for a fixed period of time for unit i at time
t. Yi is a vector or cluster of correlated data where yit is correlated with yit′

for some or all t, t′. Note that the model assumes correlations within i but
independence across i.

• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | λi)
Yit ∼ g(yit | λit)

where f and g are unspecified distributions with means λi and λit. GEE
models make no distributional assumptions and only require three specifi-
cations: a mean function, a variance function, and a correlation structure.
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• The systematic component is the mean function, given by:

λit = exp(xitβ)

where xit is the vector of k explanatory variables for unit i at time t and
β is the vector of coefficients.

• The variance function is given by:

Vit = λit

• The correlation structure is defined by a T × T “working” correlation ma-
trix, where T is the size of the largest cluster. Users must specify the
structure of the “working” correlation matrix a priori. The “working” cor-
relation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit = λit
as the tth diagonal element, Ri(α) is the “working” correlation matrix,
and φ is a scale parameter. The parameters are then estimated via a
quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and
correlation structure are incorrectly specified, then GEE models provide
consistent estimates of the parameters and thus the mean function as
well, while consistent estimates of the standard errors can be obtained via
a robust “sandwich” estimator. Similarly, if the mean and variance are
correctly specified but the correlation structure is incorrectly specified,
the parameters can be estimated consistently and the standard errors can
be estimated consistently with the sandwich estimator. If all three are
specified correctly, then the estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard
errors when the correlations are specified incorrectly only if the number of
units i is relatively large and the number of repeated periods t is relatively
small. Otherwise, one should use the “näıve” model-based standard errors,
which assume that the specified correlations are close approximations to
the true underlying correlations. See ? ] for more details.

4.0.23 Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE mod-
els. If you must bootstrap, bootstrapping should be done within clusters,
which is not currently supported in Zelig. For conditional prediction mod-
els, data should be matched within clusters.
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• The expected values (qi$ev) for the GEE poisson model is the mean of
simulations from the stochastic component:

E(Y ) = λc = exp(xcβ),

given draws of β from its sampling distribution, where xc is a vector of
values, one for each independent variable, chosen by the user.

• The first difference (qi$fd) for the GEE poisson model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1)
and control (trit = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yit(trit = 0)], the counterfactual expected
value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is
switched to trit = 0.

4.0.24 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "poisson.gee",

id, data), then you may examine the available information in z.out by us-
ing names(z.out), see the coefficients by using z.out$coefficients, and
a default summary of information through summary(z.out). Other elements
available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:

– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent, λit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and z-statistics.
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– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected values for the specified values of x.

– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How To Cite poisson.gee Zelig model

Patrick Lam. 2007. “poisson.gee: Generalized Estimating Equa-
tion for Poisson Regression,” in Kosuke Imai, Gary King, and
Olivia Lau, “Zelig: Everyone’s Statistical Software,” http://

gking.harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.

See also

The gee function is part of the gee package by Vincent J. Carey, ported to R
by Thomas Lumley and Brian Ripley. Advanced users may wish to refer to
help(gee) and help(family). Sample data are from [3]. Please inquire with
Lisa Martin before publishing results from these data, as this dataset includes
errors that have since been corrected.

5 probit.gee: Generalized Estimating Equation
for Probit Regression

The GEE probit estimates the same model as the standard probit regression
(appropriate when you have a dichotomous dependent variable and a set of
explanatory variables). Unlike in probit regression, GEE probit allows for de-
pendence within clusters, such as in longitudinal data, although its use is not
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limited to just panel data. The user must first specify a “working” correla-
tion matrix for the clusters, which models the dependence of each observation
with other observations in the same cluster. The “working” correlation matrix
is a T × T matrix of correlations, where T is the size of the largest cluster
and the elements of the matrix are correlations between within-cluster obser-
vations. The appeal of GEE models is that it gives consistent estimates of the
parameters and consistent estimates of the standard errors can be obtained us-
ing a robust “sandwich” estimator even if the “working” correlation matrix is
incorrectly specified. If the “working” correlation matrix is correctly specified,
GEE models will give more efficient estimates of the parameters. GEE models
measure population-averaged effects as opposed to cluster-specific effects (See
(author?) [4]).

5.0.25 Syntax

> z.out <- zelig(Y ~ X1 + X2, model = "probit.gee",

id = "X3", data = mydata)

> x.out <- setx(z.out)

> s.out <- sim(z.out, x = x.out)

where id is a variable which identifies the clusters. The data should be sorted
by id and should be ordered within each cluster when appropriate.

5.0.26 Additional Inputs

• robust: defaults to TRUE. If TRUE, consistent standard errors are estimated
using a “sandwich” estimator.

Use the following arguments to specify the structure of the“working”correlations
within clusters:

• corstr: defaults to "independence". It can take on the following argu-
ments:

– Independence (corstr = "independence"): cor(yit, yit′) = 0, ∀t, t′
with t 6= t′. It assumes that there is no correlation within the clusters
and the model becomes equivalent to standard probit regression. The
“working” correlation matrix is the identity matrix.

– Fixed (corstr = "fixed"): If selected, the user must define the
“working” correlation matrix with the R argument rather than es-
timating it from the model.

– Stationary m dependent (corstr = "stat_M_dep"):

cor(yit, yit′) =

{
α|t−t′| if |t− t′| ≤ m

0 if |t− t′| > m

If (corstr = "stat_M_dep"), you must also specify Mv = m, where
m is the number of periods t of dependence. Choose this option when
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the correlations are assumed to be the same for observations of the
same |t− t′| periods apart for |t− t′| ≤ m.

Sample “working” correlation for Stationary 2 dependence (Mv=2)
1 α1 α2 0 0
α1 1 α1 α2 0
α2 α1 1 α1 α2

0 α2 α1 1 α1

0 0 α2 α1 1


– Non-stationary m dependent (corstr = "non_stat_M_dep"):

cor(yit, yit′) =

{
αtt′ if |t− t′| ≤ m
0 if |t− t′| > m

If (corstr = "non_stat_M_dep"), you must also specify Mv = m,
wherem is the number of periods t of dependence. This option relaxes
the assumption that the correlations are the same for all observations
of the same |t− t′| periods apart.

Sample “working” correlation for Non-stationary 2 dependence
(Mv=2)

1 α12 α13 0 0
α12 1 α23 α24 0
α13 α23 1 α34 α35

0 α24 α34 1 α45

0 0 α35 α45 1


– Exchangeable (corstr = "exchangeable"): cor(yit, yit′) = α, ∀t, t′

with t 6= t′. Choose this option if the correlations are assumed to be
the same for all observations within the cluster.

Sample “working” correlation for Exchangeable
1 α α α α
α 1 α α α
α α 1 α α
α α α 1 α
α α α α 1


– Stationary mth order autoregressive (corstr = "AR-M"): If (corstr

= "AR-M"), you must also specify Mv = m, where m is the number
of periods t of dependence. For example, the first order autoregres-
sive model (AR-1) implies cor(yit, yit′) = α|t−t

′|,∀t, t′ with t 6= t′.
In AR-1, observation 1 and observation 2 have a correlation of α.
Observation 2 and observation 3 also have a correlation of α. Ob-
servation 1 and observation 3 have a correlation of α2, which is a
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function of how 1 and 2 are correlated (α) multiplied by how 2 and
3 are correlated (α). Observation 1 and 4 have a correlation that is
a function of the correlation between 1 and 2, 2 and 3, and 3 and 4,
and so forth.

Sample “working” correlation for Stationary AR-1 (Mv=1)
1 α α2 α3 α4

α 1 α α2 α3

α2 α 1 α α2

α3 α2 α 1 α
α4 α3 α2 α 1


– Unstructured (corstr = "unstructured"): cor(yit, yit′) = αtt′ , ∀t, t′

with t 6= t′. No constraints are placed on the correlations, which are
then estimated from the data.

• Mv: defaults to 1. It specifies the number of periods of correlation and only
needs to be specified when corstr is "stat_M_dep", "non_stat_M_dep",
or "AR-M".

• R: defaults to NULL. It specifies a user-defined correlation matrix rather
than estimating it from the data. The argument is used only when corstr

is "fixed". The input is a T × T matrix of correlations, where T is the
size of the largest cluster.

5.0.27 Examples

1. Example with Stationary 3 Dependence

Attaching the sample turnout dataset:

> data(turnout)

Variable identifying clusters

> turnout$cluster <- rep(c(1:200),10)

Sorting by cluster

> sorted.turnout <- turnout[order(turnout$cluster),]

Estimating parameter values:

> z.out1 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "stat_M_dep", Mv=3)

(Intercept) racewhite educate

-0.72594913 0.29907642 0.09711897

How to cite this model in Zelig:
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Patrick Lam. 2013.

"probit.gee: General Estimating Equation for Poisson Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Setting values for the explanatory variables to their default values:

> x.out1 <- setx(z.out1)

Simulating quantities of interest:

> s.out1 <- sim(z.out1, x = x.out1)

> summary(s.out1)

Model: probit.gee

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 12.06675

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

0.771 0.011 0.771 0.751 0.792

> plot(s.out1)
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2. Simulating First Differences

Estimating the risk difference (and risk ratio) between low education (25th
percentile) and high education (75th percentile) while all the other vari-
ables held at their default values.

> x.high <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.75))

> x.low <- setx(z.out1, educate = quantile(turnout$educate, prob = 0.25))

> s.out2 <- sim(z.out1, x = x.high, x1 = x.low)

> summary(s.out2)

Model: probit.gee

Number of simulations: 1000

Values of X

(Intercept) racewhite educate

1 1 1 14

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race
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[1] "contr.treatment"

Values of X1

(Intercept) racewhite educate

1 1 1 10

attr(,"assign")

[1] 0 1 2

attr(,"contrasts")

attr(,"contrasts")$race

[1] "contr.treatment"

Expected Values (for x): E(Y|X)

mean sd 50% 2.5% 97.5%

0.825 0.011 0.825 0.805 0.848

Expected Values (for x1): E(Y|X1)

mean sd 50% 2.5% 97.5%

0.707 0.014 0.707 0.68 0.736

First Differences: E(Y|X1) - E(Y|X)

mean sd 50% 2.5% 97.5%

-0.117 0.012 -0.117 -0.14 -0.094

Risk Ratios: E(Y|X1)/E(Y|X)

mean sd 50% 2.5% 97.5%

0.858 0.014 0.858 0.831 0.886

> plot(s.out2)
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3. Example with Fixed Correlation Structure

User-defined correlation structure

> corr.mat <- matrix(rep(0.5,100), nrow=10, ncol=10)

> diag(corr.mat) <- 1

Generating empirical estimates:

> z.out2 <- zelig(vote ~ race + educate, model = "probit.gee", id = "cluster", data = sorted.turnout, robust = TRUE, corstr = "fixed", R=corr.mat)

(Intercept) racewhite educate

-0.72594913 0.29907642 0.09711897

How to cite this model in Zelig:

Patrick Lam. 2013.

"probit.gee: General Estimating Equation for Poisson Regression"

in Kosuke Imai, Gary King, and Olivia Lau, "Zelig: Everyone's Statistical Software,"

http://gking.harvard.edu/zelig

Viewing the regression output:

> summary(z.out2)
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GEE: GENERALIZED LINEAR MODELS FOR DEPENDENT DATA

gee S-function, version 4.13 modified 98/01/27 (1998)

Model:

Link: Probit

Variance to Mean Relation: Binomial

Correlation Structure: Fixed

Call:

gee(formula = formula, id = id, corstr = corstr, family = binomial(link = "probit"),

data = data, R = R, .hook = robust.gee.hook)

Summary of Residuals:

Min 1Q Median 3Q Max

-0.9191419 -0.3146504 0.2063033 0.2349483 0.7801544

Coefficients:

Estimate Naive S.E. Naive z Robust S.E. Robust z

(Intercept) -0.77271488 0.105618565 -7.316090 0.133841982 -5.773337

racewhite 0.33534707 0.061921463 5.415684 0.088349410 3.795691

educate 0.09666793 0.007082234 13.649355 0.009711359 9.954110

Estimated Scale Parameter: 0.9734069

Number of Iterations: 3

Working Correlation

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[2,] 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[3,] 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5 0.5

[4,] 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5 0.5

[5,] 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5 0.5

[6,] 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5 0.5

[7,] 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5 0.5

[8,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5 0.5

[9,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0 0.5

[10,] 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 1.0

5.0.28 The Model

Suppose we have a panel dataset, with Yit denoting the binary dependent vari-
able for unit i at time t. Yi is a vector or cluster of correlated data where
yit is correlated with yit′ for some or all t, t′. Note that the model assumes
correlations within i but independence across i.
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• The stochastic component is given by the joint and marginal distributions

Yi ∼ f(yi | πi)
Yit ∼ g(yit | πit)

where f and g are unspecified distributions with means πi and πit. GEE
models make no distributional assumptions and only require three specifi-
cations: a mean function, a variance function, and a correlation structure.

• The systematic component is the mean function, given by:

πit = Φ(xitβ)

where Φ(µ) is the cumulative distribution function of the Normal distri-
bution with mean 0 and unit variance, xit is the vector of k explanatory
variables for unit i at time t and β is the vector of coefficients.

• The variance function is given by:

Vit = πit(1− πit)

• The correlation structure is defined by a T × T “working” correlation ma-
trix, where T is the size of the largest cluster. Users must specify the
structure of the “working” correlation matrix a priori. The “working” cor-
relation matrix then enters the variance term for each i, given by:

Vi = φA
1
2
i Ri(α)A

1
2
i

where Ai is a T × T diagonal matrix with the variance function Vit =
πit(1−πit) as the tth diagonal element, Ri(α) is the “working” correlation
matrix, and φ is a scale parameter. The parameters are then estimated
via a quasi-likelihood approach.

• In GEE models, if the mean is correctly specified, but the variance and
correlation structure are incorrectly specified, then GEE models provide
consistent estimates of the parameters and thus the mean function as
well, while consistent estimates of the standard errors can be obtained via
a robust “sandwich” estimator. Similarly, if the mean and variance are
correctly specified but the correlation structure is incorrectly specified,
the parameters can be estimated consistently and the standard errors can
be estimated consistently with the sandwich estimator. If all three are
specified correctly, then the estimates of the parameters are more efficient.

• The robust“sandwich”estimator gives consistent estimates of the standard
errors when the correlations are specified incorrectly only if the number of
units i is relatively large and the number of repeated periods t is relatively
small. Otherwise, one should use the “näıve” model-based standard errors,
which assume that the specified correlations are close approximations to
the true underlying correlations. See ? ] for more details.
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5.0.29 Quantities of Interest

• All quantities of interest are for marginal means rather than joint means.

• The method of bootstrapping generally should not be used in GEE mod-
els. If you must bootstrap, bootstrapping should be done within clusters,
which is not currently supported in Zelig. For conditional prediction mod-
els, data should be matched within clusters.

• The expected values (qi$ev) for the GEE probit model are simulations of
the predicted probability of a success:

E(Y ) = πc = Φ(xcβ),

given draws of β from its sampling distribution, where xc is a vector of
values, one for each independent variable, chosen by the user.

• The first difference (qi$fd) for the GEE probit model is defined as

FD = Pr(Y = 1 | x1)− Pr(Y = 1 | x).

• The risk ratio (qi$rr) is defined as

RR = Pr(Y = 1 | x1) / Pr(Y = 1 | x).

• In conditional prediction models, the average expected treatment effect
(att.ev) for the treatment group is

1∑n
i=1

∑T
t=1 trit

n∑
i:trit=1

T∑
t:trit=1

{Yit(trit = 1)− E[Yit(trit = 0)]} ,

where trit is a binary explanatory variable defining the treatment (trit = 1)
and control (trit = 0) groups. Variation in the simulations are due to
uncertainty in simulating E[Yit(trit = 0)], the counterfactual expected
value of Yit for observations in the treatment group, under the assumption
that everything stays the same except that the treatment indicator is
switched to trit = 0.

5.0.30 Output Values

The output of each Zelig command contains useful information which you may
view. For example, if you run z.out <- zelig(y ~ x, model = "probit.gee",

id, data), then you may examine the available information in z.out by us-
ing names(z.out), see the coefficients by using z.out$coefficients, and
a default summary of information through summary(z.out). Other elements
available through the $ operator are listed below.

• From the zelig() output object z.out, you may extract:
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– coefficients: parameter estimates for the explanatory variables.

– residuals: the working residuals in the final iteration of the fit.

– fitted.values: the vector of fitted values for the systemic compo-
nent, πit.

– linear.predictors: the vector of xitβ

– max.id: the size of the largest cluster.

• From summary(z.out), you may extract:

– coefficients: the parameter estimates with their associated stan-
dard errors, p-values, and z-statistics.

– working.correlation: the “working” correlation matrix

• From the sim() output object s.out, you may extract quantities of inter-
est arranged as matrices indexed by simulation × x-observation (for more
than one x-observation). Available quantities are:

– qi$ev: the simulated expected probabilities for the specified values
of x.

– qi$fd: the simulated first difference in the expected probabilities for
the values specified in x and x1.

– qi$rr: the simulated risk ratio for the expected probabilities simu-
lated from x and x1.

– qi$att.ev: the simulated average expected treatment effect for the
treated from conditional prediction models.

How To Cite probit.gee Zelig model

Patrick Lam. 2007. “probit.gee: Generalized Estimating Equation
for Probit Regression,” in Kosuke Imai, Gary King, and Olivia
Lau, “Zelig: Everyone’s Statistical Software,” http://gking.

harvard.edu/zelig.

How to Cite the Zelig Software Package

To cite Zelig as a whole, please reference these two sources:

Kosuke Imai, Gary King, and Olivia Lau. 2007. “Zelig: Everyone’s
Statistical Software,” http://GKing.harvard.edu/zelig.

Imai, Kosuke, Gary King, and Olivia Lau. (2008). “Toward A Com-
mon Framework for Statistical Analysis and Development.” Jour-
nal of Computational and Graphical Statistics, Vol. 17, No. 4
(December), pp. 892-913.
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See also

The gee function is part of the gee package by Vincent J. Carey, ported to R
by Thomas Lumley and Brian Ripley. Advanced users may wish to refer to
help(gee) and help(family). Sample data are from [2].
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