
pyFAI Documentation
Release 0.11.0

Jérôme Kieffer

July 22, 2015

CONTENTS

1 General introduction to PyFAI 3
1.1 Python Fast Azimuthal Integration . 3
1.2 Introduction . 3
1.3 Experiment description . 3
1.4 Regrouping mechanism . 8
1.5 Related Work . 12
1.6 Conclusion . 12

2 Cookbook recipes 13
2.1 Calibration of a diffraction setup . 13
2.2 Azimuthal integration using the graphical user interface . 14

3 pyFAI scripts manual 17
3.1 Preprocessing tool: pyFAI-average . 17
3.2 Mask generation tool: drawMask_pymca . 18
3.3 Preprocessing tool: detector2nexus . 20
3.4 Calibration tool: pyFAI-calib . 21
3.5 Calibration tool: pyFAI-recalib . 26
3.6 Calibration tool: check_calib . 28
3.7 Calibration tool: MX-calibrate . 29
3.8 Integration tool: pyFAI-integrate . 32
3.9 Integration tool: diff_tomo . 34
3.10 Integration tool: pyFAI-saxs . 36
3.11 Integration tool: pyFAI-saxs . 37

4 Design of the Python Fast Azimuthal Integration library 41
4.1 Design of the Python Fast Azimuthal Integrator . 41

5 pyFAI API 45
5.1 pyFAI Package . 45
5.2 azimuthalIntegrator Module . 45
5.3 integrate_widget Module . 52
5.4 geometry Module . 53
5.5 geometryRefinement Module . 62
5.6 detectors Module . 64
5.7 spline Module . 76
5.8 opencl Module . 78
5.9 ocl_azim Module . 80
5.10 ocl_azim_lut Module . 82
5.11 ocl_azim_csr Module . 83
5.12 ocl_azim_csr_dis Module . 83
5.13 worker Module . 84
5.14 io Module . 85
5.15 calibration Module . 88

i

5.16 peak_picker Module . 91
5.17 massif Module . 94
5.18 blob_detection Module . 95
5.19 calibrant Module . 96
5.20 distortion Module . 98
5.21 units Module . 99
5.22 utils Module . 99
5.23 gui_utils Module . 104

6 Installation of Python Fast Azimuthal Integration library 105
6.1 Abstract . 105
6.2 Hardware requirement . 105
6.3 Dependencies . 105
6.4 Build dependencies: . 106
6.5 Building procedure . 106
6.6 Test suites . 110
6.7 Environment variables . 110
6.8 References: . 110

7 PyFAI Ecosystem 111
7.1 Software pyFAI is relying on . 111
7.2 Program using pyFAI as a library . 111

8 Programming language 115

9 Repository: 117

10 Getting help 119

11 Run dependencies 121

12 Build dependencies: 123

13 Building procedure 125
13.1 As most of the python projects: . 125

14 Test suites 127
14.1 To run the test an internet connection is needed as 200MB of test images will be downloaded. . . 127

15 List of contributors in code 129

16 List of other contributors (ideas or code) 131

17 List of supporters 133

18 Changelog of Versions 135
18.1 0.1: 05/2011 . 135
18.2 0.2: 07/2011 . 135
18.3 0.3: 11/2011 . 135
18.4 0.4: 06/2012 . 135
18.5 0.5: 06/2012 . 135
18.6 0.6: 07/2012 . 135
18.7 0.7: 07/2012 . 135
18.8 0.7.2: 08/2012 . 136
18.9 0.8: 10/2012 . 136
18.10 0.9: 10/2013 . 137
18.11 0.9.2: (01/2014) . 137
18.12 0.9.3: 02/2014 . 137
18.13 0.9.4: 06/2014 . 137
18.14 0.10.0: 10/2014 . 138

ii

18.15 0.10.1: 10/2014 . 138
18.16 0.10.2: 11/2014 . 138
18.17 0.10.3: 03/2015 . 139
18.18 0.11.0: 07/2015 . 139

19 Indices and tables 141

Bibliography 143

Python Module Index 145

iii

iv

pyFAI Documentation, Release 0.11.0

PyFAI A Python libary for high performance azimuthal integration which can use on GPU, which was presented
at EuroScipy 2014: the video is online as well as the proceedings.

This document starts with a general descriptions of the pyFAI library in the first chapter. This first chapter contains
an introduction to pyFAI, what it is, what it aims at and how it works (for scientists). Especially, geometry,
calibration, azimuthal integration algorithms are described and pixel splitting schemes are explained.

Follows cookbook, tutorials on how to use pyFAI scripts, then the manual pages of all scripts. Those are programs
to be launched at the command line allowing the treatment of a diffraction experiment without knowing anything
about Python.

The design of the programming interface is then exposed before a comprehensive description of most modules
contained in pyFAI. Some minor submodules as well as the documentation of the Cython sub-modules are not
included for concision purposes. The last chapter is an appendix giving some figures about the project and its
management.

Installation procedures for Windows, MacOSX and Linux operating systems are then described. Finally other
programs/projects relying on pyFAI are presented and the project is summarized from a developer’s point of view.

CONTENTS 1

https://www.youtube.com/watch?v=QSlo_Nyzeig
http://arxiv.org/abs/1412.6367

pyFAI Documentation, Release 0.11.0

2 CONTENTS

CHAPTER

ONE

GENERAL INTRODUCTION TO PYFAI

1.1 Python Fast Azimuthal Integration

PyFAI is implemented in Python programming language, which is open source and already very popular for
scientific data analysis ([PyMca], [PyNX], . . .). It relies on the scientific stack of python composed of [NumPy],
[SciPy] and [Matplotlib] plus the [OpenCL] binding [PyOpenCL] for performances.

2D area detectors like CCD or pixel detectors have become popular in the last 15 years for diffraction exper-
iments (e.g. for WAXS, SAXS, single crystal and powder diffraction). These detectors have a large sensitive
area of millions of pixels with high spatial resolution. The software package pyFAI ([SRI2012], [EPDIC13]) has
been designed to reduce SAXS, WAXS and XRPD images taken with those detectors into 1D curves (azimuthal
integration) usable by other software for in-depth analysis such as Rietveld refinement, or 2D images (a radial
transformation named caking in [FIT2D]). As a library, the aim of pyFAI is to be integrated into other tools like
[PyMca] or [EDNA] or [LImA] with a clean pythonic interface. However pyFAI features also command line and
graphical tools for batch processing, converting data into q-space (q being the momentum transfer) or 2θ-space (θ
being the Bragg angle) and a calibration graphical interface for optimizing the geometry of the experiment using
the Debye-Scherrer rings of a reference sample. PyFAI shares the geometry definition of SPD but can directly
import geometries determined by the software FIT2D. PyFAI has been designed to work with any kind of detector
and geometry (transmission or reflection) and relies on FabIO, a library able to read more than 20 image formats
produced by detectors from 12 different manufacturers. During the transformation from cartesian space (x, y) to
polar space (2θ, χ), both local and total intensities are conserved in order to obtain accurate quantitative results.
Technical details on how this integration is implemented and how it has been ported to native code and parallelized
on graphic cards are discussed in this paper.

1.2 Introduction

With the advent of hyperspectral experiments like diffraction tomography in the world of synchrotron radiation,
existing software tools for azimuthal integration like [FIT2D] and [SPD] reached their performance limits owing
to the fast data rate needed by such experiments. Even when integrated into massively parallel frameworks like
[EDNA] , such stand-alone programs, due to their monolithic nature, cannot keep the pace with the data flow
of new detectors. Therefore we decided to implemente from scratch a novel azimuthal integration tool which is
designed to take advantage of modern parallel hardware features. PyFAI assumes the setup does not change during
the experiment and tries to reuse a maximum number of data (using memoization), moreover those calculation are
performed only when needed (lazy_evaluation).

1.3 Experiment description

In pyFAI, the basic experiment is defined by a description of an area-detector whose position in space is defined
through the sample position and the incident X-ray beam, and can be calibrated using Debye-Scherrer rings of a
reference compound.

3

http://python.org
http://en.wikipedia.org/wiki/Memoization
http://en.wikipedia.org/wiki/Lazy_evaluation

pyFAI Documentation, Release 0.11.0

1.3.1 Detector

Simple detector

Like most other diffraction processing packages, pyFAI allows the definition of 2D detectors with a constant pixel
size and recoded in S.I.. Typical pixel size are 50e-6 m and will be used as example in the numerical application.

Pixels of the detector are indexed from the origin located at the lower left corner. The pixel center is located at
half integer index: * pixel 0 goes from position 0 to 50e-6 and is centered at 25e-6. * pixel 1 goes from position
50e-6 to 100e-6 and is centered at 75e-6m

Complex detectors

The simple detector approach reaches its limits with several detector types, such as multi-module and fiber optic
taper coupled detectors. Large area pixel detectors are often composed of smaller modules (i.e. Pilatus from
Dectris, Maxipix from ESRF,...).

By construction, such detectors exhibit gaps between modules along with pixels of various sizes within a single
module, hence they require specific data masks. Optically coupled detectors need also to be corrected for small
spatial displacements, often called geometric distortion. This is why detectors need more complex definitions than
just that of a pixel size. To avoid complicated and error-prone sets of parameters, two tools have been introduced:
either detector classes define programatically detector or Nexus saved detector setup.

Detectors classes

They are used to define families of detectors. In order to take the specificities of each detector into account, pyFAI
contains about 40 detector class definitions (and twice a much with aliases) which contain a mask (invalid pixels,
gaps, ...) and a method to calculate the pixel positions in Cartesian coordinates. Available detectors can be printed
using:

import pyFAI
print(pyFAI.detectors.ALL_DETECTORS)

For optically coupled CCD detectors, the geometrical distortion is often described by a bi-dimensional cubic spline
which can be imported into the detector instance and be used to calculate the actual pixel position in space.

Nexus Detectors

Any detector object in pyFAI, can be saved into a HDF5 file following the NeXus convention
(http://nexusformat.org). Detector objects can subsequently be restored from the disk, making complex detec-
tor definitions less error-prone. Pixels of an area detector are saved as a 4D dataset: i.e. a 2D array of vertices
pointing to every corner of each pixel, generating an array of shape: (Ny, Nx, Nc, 3) where Nx and Ny are the
dimensions of the detector, Nc is the number of corners of each pixel, usually 4, and the last entry contains the
coordinates of the vertex itself (z,y,x). This kind of definitions, while relying on large description files, can address
some of the most complex detector layouts:

• hexagonal pixels (i.e. Pixirad detectors)

• curved/bent imaging plates (i.e. Rigaku)

• pixel detectors with tiled modular (i.e. Xpad detectors from ImXpad)

• semi-cylindrical pixel detectors (i.e. Pilatus12M from Dectris).

The detector instance can be saved as HDF5, either programmatically, either on the command line.

from pyFAI import detectors
frelon = detectors.FReLoN("halfccd.spline")
print(frelon)
frelon.save("halfccd.h5")

4 Chapter 1. General introduction to PyFAI

http://nexusformat.org

pyFAI Documentation, Release 0.11.0

Using the detector2nexus script to convert a complex detector definition (multiple modules, possibly in 3D) into a
single NeXus detector definition together with the mask:

detector2nexus -s halfccd.spline -o halfccd.h5

1.3.2 Geometry

PyFAI uses a 6-parameter geometry definition similar, while not rigorously identical to SPD: One distance, 2
coordinates to define the point of normal incidence and 3 rotations around the main axis; these parameters are
saved in text files usually with the .poni extension.

Image representation in Python

PyFAI takes diffraction images as 2D numpy arrays, those are usually read using the FabIO library:

import fabio
data = fabio.open("image.edf").data

But data can also be extracted from HDF5 files with h5py and displayed using matplotlib:

%pylab
imshow(data, origin="lower")

Because Python is written in C language, data are stored lines by lines, this means to go from a pixel to
the on its right, one offets the position by the pixel width. To go the pixel above the current one, on
needs to offset by the length of the line. This is why, if one considers the pixel at position (x,y), its
value can be retrieved by data[y,x] (note the order y,x, this is not a bug!). We usually refer the x axis
as the fast dimension (because pixels are adjacent) and the y axis as the slow axis (as pixel are appart
from each other by a line length). More information on how numpy array are stored can be found at:
https://github.com/numpy/numpy/blob/master/doc/source/reference/arrays.ndarray.rst

Like most scientific packages, the origin of the image is considered to be at the lower-left corner of the image
to have the polar angle growing from 0 along the x axis to 90 deg along the y axis. This is why we pass the
origin=”lower” option to imshow. Axis 1 and 2 on the image (like in poni1 & poni2) refer to the slow and fast
dimension of the image, so usually to the y and x axis (and not the opposite)

Position of the observer

There are two (main) conventions when representing images:

• In imaging application, one can can replace the camera by the eye, the camera looks at the scene. In this
convention, the origin is usually at the top of the image.

• In diffraction application, the observer is situated at the sample position and looks

at the detector, hence on the other side of the detector. Because we measure (signed) angles, the origin is ideally
situated at the lower left of the image.

PyFAI being a diffraction application, it uses the later description.

Default geometry in pyFAI

In the (most common) case of transmission diffraction setup on synchrotrons (like ESRF, Soleil, Petra3, SLS...)
this makes looks like:

• Observer looking at the detector from the sample position:

• Origin at the lower left of the detector

• Axis 1 (i.e. y) being vertical, pointing upwards

• Axis 2 (i.e. x) being horizontal, pointing to the center of the storage ring

1.3. Experiment description 5

https://github.com/numpy/numpy/blob/master/doc/source/reference/arrays.ndarray.rst

pyFAI Documentation, Release 0.11.0

• Axis 3 (i.e. z) being horizontal, along the transmitted beam

Axis 3 is built in such a way to be orthogonal and (1,2,3) is a direct orientation. This makes the sample position at
z<0.

Detector position

In pyFAI, the experiment geometry is defined by the position of the detector in space, the origin being located at
the sample position, more precisely where the X-ray beam crosses the diffractometer main axis.

With the detector being a rigid body, its position in space is described by six parameters: 3 translations and 3
rotations. In pyFAI, the beam center is not directly used as it is ill-defined with highly tilted detectors. Like SPD,
we use the orthogonal projection of origin on the detector surface called PONI (for Point Of Normal Incidence).
For non planar detectors, the PONI is defined in the plan z=0 in detector’s coordinate system.

Poni1 and Poni2 are distances in meter (along the y and x axis of the detector), like the sample-detector distance,
letting the calibration parameters be independent of the pixel size hence stable regarding the binning factor of the
detector.

In the same idea rot1, rot2 and rot3 are rotation along axis 1, 2 and 3, always expressed in radians. Rotations
applied in the same order: rot1 then rot2 and finally rot3. Due to the axial symmetry of the Debye-Scherrer
cones, rot3 cannot be optimized but can be adjusted manually in some cases like if the detector is not mounted
horizontally and/or one cares about polarization correction.

When all rotations are zero, the detector is in transmission mode with the incident beam orthogonal to the detector’s
surface.

6 Chapter 1. General introduction to PyFAI

pyFAI Documentation, Release 0.11.0

1.3.3 calibration

The determination of the geometry of the experimental setup for the diffraction pattern of a reference sample
is called calibration in pyFAI. A geometry setup is composed of a detector, the six refined parameters like the
distance and fixed parameters like the wavelength (or the energy of the beam), they are all saved together into a
text files named ”.poni” (as a reference to the point of normal incidence) which is subsequently used for processing
the experiment.

The program pyFAI-calib helps calibrating

the experimental setup using a constrained least squares optimization on the Debye-Scherrer rings of a reference
sample (LaB6, silver behenate, . . .) and saves the results into a .poni file. Alternatively, geometries calibrated us-
ing fit2d can be imported into pyFAI, including geometric distortions (i.e. optical-fiber tapers distortion) described
as spline-files.

By storing all parameters together in a single small file, the risk of mixing two parameters is highly reduced and
we believe this helps performing better science with fewer mistakes.

While entering the geometry of the experiment in a poni-file is possible it is easier to perform a calibration, using
the Debye-Sherrer rings of a reference sample called calibrant. About 10 calibrant description files are shipped
with the default installation of pyFAI, like LaB6, silicon, ceria, corrundum or silver behenate. The user can
choose to provide their own calibrant description files which are simple text-file containing the largest d-spacing
(in Angstrom) for a set of Miller plans. A useful reference is the American Mineralogist database [AMD] or the
Crystallographic Open database [COD].

The calibration is divided into 4 major steps:

Pre-processing of images:

The typical pre-processing consists of the averaging (or median filter) of darks images. Dark current images are
then subtracted from data and corrected for flat.

If saturated pixels exists, the are likely to be treated like peaks but their positions will be wrong. It is advised to
either mask them out or to desaturate them (pyFAI provides an option, but it is expensive in calculation time)

Peak-picking

The Peak-picking consists in the identification of peaks and groups of peaks belonging to same ring. It can be
performed by two methods : blob detection or massif detection.

Massif detection

This method consists in making the difference of the original image and a blurred image. Then we look for a
chain of positives values, corresponding to a single group of peak. The blurring parameter can be adjusted using
the “-g” option in pyFAI-calib.

Blob detection

The approach is based on difference of gaussians (DoGs) as described in the blob_detection article of wikipedia.

It consists in blurring the image by convolution with a 2D gaussian kernel and making differences between two
successive blurs (called Difference Of Gaussian). In theses DoGs, keypoints are defined as the maxima in the 3D
space (y,x,size of the gaussian). After their localization, keypoints are refined by Savitzky Golay algorithm or by
an interpolation at the second order which is equivalent but uses less points. At this step, if the estimation of the
maximum is too far from the maximum, the keypoint will be considered as a fake maximum and removed.

1.3. Experiment description 7

http://en.wikipedia.org/wiki/Blob_detection

pyFAI Documentation, Release 0.11.0

Steepest ascent

This is very naive implementation which looks for the nearest local maximum. Subsequently a sub-pixel opti-
mization is performed based on the local gradient and hessian.

Monte-Carlo sampling

Series of peaks can be extracted using the Steepest Ascent on randomly selected seeds.

Refinement of the parameters

After grouping of peaks, groups of peak are assigned to a Debye-Scherrer ring and to a d-spacing. PyFAI uses a
least-squares refinement of the geometry parameters on peak position.

The optimization procedure is the Sequential Least SQuares Programming implemented in scipy.optimize.slsqp.
The cost function is the sum of the square of the difference between the expected and calculated 2theta values for
the various peaks. This sum is dependent on the number of control-points.

Validation of the calibration

Validation by an human being of the geometry is an essential step: pyFAI will overlay to the diffraction image, the
lines corresponding to the various diffraction rings expected from the calibrant. Those lines should be in pretty
good agreement with the rings of the scattering image.

Once the calibration is finished, one can use the validate option to check the offset between the input image and
the generated on from the diffraction pattern.

1.3.4 PyFAI executables

PyFAI was designed to be used by scientists needing a simple and effective tool for azimuthal integration. Two
command line programs pyFAI-waxs and pyFAI-saxs are provided with pyFAI for performing the integration of
one or more images on the command line. The waxs version outputs result in 2θ/I , whereas the saxs version
outputs result in q/I(/σ). Options for these programs are parameter file (poni-file) describing the geometry and
the mask file. They can also do some pre-processing like dark-noise subtraction and flat-field correction (solid-
angle correction is done by default).

A new Graphical interface based on Qt called pyFAI-integrate is now available, offers all options possible for
azimuthal integration (dark/flat/polarization,) in addition to a finer tuning for the computing device selection
(CPU/GPU).

Finally a specialized tool called diff_tomo is available to reduce a mapping of 2D images into a 3D volume
(math:x, y, 2theta for mapping or math:rot, trans, 2theta for tomography)

1.3.5 Python library

PyFAI is first and foremost a library: a tool of the scientific toolbox built around [IPython] and [NumPy] to
perform data analysis either interactively or via scripts. Figure [notebook] shows an interactive session where an
integrator is created, and an image loaded and integrated before being plotted.

1.4 Regrouping mechanism

In pyFAI, regrouping is performed using a histogram-like algorithm. Each pixel of the image is associated to
its polar coordinates (2θ, χ) or (q, χ), then a pair of histograms versus 2θ (or q) are built, one non weighted for
measuring the number of pixels falling in each bin and another weighted by pixel intensities (after dark-current

8 Chapter 1. General introduction to PyFAI

pyFAI Documentation, Release 0.11.0

subtraction, and corrections for flat-field, solid-angle and polarization). The division of the weighted histogram
by the number of pixels per bin gives the diffraction pattern. 2D regrouping (called caking in FIT2D) is obtained
in the same way using two-dimensional histograms over radial (2θ or q) and azimuthal angles (χ).

1.4.1 Pixel splitting algorithm

Powder diffraction patterns obtained by histogramming have a major weakness where pixel statistics are low.
A manifestation of this weakness becomes apparent in the 2D-regrouping where most of the bins close to the
beam-stop are not populated by any pixel. In this figure, many pixels are missing in the low 2θ region, due to
the arbitrary discretization of the space in pixels as intensities were assigned to each pixel center which does not
reflect the physical reality of the scattering experiment.

1.4. Regrouping mechanism 9

pyFAI Documentation, Release 0.11.0

PyFAI solves this problem by pixel splitting : in addition to the pixel position, its spatial extension is calculated and
each pixel is then split and distributed over the corresponding bins, the intensity being considered as homogeneous
within a pixel and spread accordingly. The drawback of this is the correlation introduced between two adjacent
bins. To simplify calculations, this was initially done by abstracting the pixel shape with a bounding box that
circumscribes the pixel. In an effort to better the quality of the results this method was dropped in favoor of a full

pixel splitting scheme that actually uses the actual pixel geometry for its calculations.

1.4.2 Performances and migration to native code

Originally, regrouping was implemented using the histogram provided by [NumPy], then re-implemented in
[Cython] with pixel splitting to achieve a four-fold speed-up. The computation time scales like O(N) with the size
of the input image. The number of output bins shows only little influence; overall the single threaded [Cython]
implementation has been stated at 30 Mpix/s (on a 3.4 GHz Intel core i7-2600).

1.4.3 Parallel implementation

The method based on histograms works well on a single processor but runs into problems requiring so called
“atomic operations” when run in parallel. Processing pixels in the input data order causes write access conflicts
which become less efficient with the increase of number of computing units (need of atomic_operation)_. This
is the main limit of the method exposed previously; especially on GPU where hundreds of threads are executed
simultaneously.

To overcome this limitation; instead of looking at where input pixels GO TO in the output image, we instead look
at where the output pixels COME FROM in the input image. This transformation is called a “scatter to gather”
transformation in parallel programming.

10 Chapter 1. General introduction to PyFAI

pyFAI Documentation, Release 0.11.0

The correspondence between pixels and output bins can be stored in a look-up table (LUT) together with the pixel
weight which make the integration look like a simple (if large and sparse) matrix vector product. This look-up
table size depends on whether pixels are split over multiple bins and to exploit the sparse structure, both index and
weight of the pixel have to be stored. We measured that 500 Mbytes are needed to store the LUT to integrate a 16
megapixels image, which fits onto a reasonable quality graphics card nowadays but can still be too large to fit on
an entry-level graphics card.

By making this change we switched from a “linear read / random write” forward algorithm to a “random read
/ linear write” backward algorithm which is more suitable for parallelization. As a farther improvement on the
algorithm, the use of compressed sparse row (CSR) format was introduced, to store the LUT data. This algorithm
was implemented both in [Cython]-OpenMP and OpenCL. The CSR approach has a double benefit: first, it reduces
the size of the storage needed compared to the LUT by a factor two to three, offering the opportunity of working
with larger images on the same hardware. Secondly, the CSR implementation in OpenCL is using an algorithm
based on multiple parallel reductions where many execution threads are collaborating to calculate the content of
a single bin. This makes it very well suited to run on GPUs and accelerators where hundreds to thousands of
simultaneous threads are available.

When using OpenCL for the GPU we used a compensated (or Kahan_summation), to reduce the error accumu-
lation in the histogram summation (at the cost of more operations to be done). This allows accurate results to
be obtained on cheap hardware that performs calculations in single precision floating-point arithmetic (32 bits)
which are available on consumer grade graphic cards. Double precision operations are currently limited to high
price and performance computing dedicated GPUs. The additional cost of Kahan summation, 4x more arithmetic
operations, is hidden by smaller data types, the higher number of single precision units and that the GPU is usually
limited by the memory bandwidth anyway.

The performances of the parallel implementation based on a LUT, stored in CSR format, can reach 750 MPix/s
on recent multi-core computer with a mid-range graphics card. On multi-socket server featuring high-end GPUs
like Tesla cards, the performances are similar with the additional capability to work on multiple detector simulta-
neously.

1.4. Regrouping mechanism 11

http://en.wikipedia.org/wiki/Kahan_summation_algorithm

pyFAI Documentation, Release 0.11.0

1.5 Related Work

We report here scientific software which are using pyFAI for azimuthal integration:

• “Dioptas” is a graphical user interface for calibrating and processing high pressure Xray diffraction experi-
ment, developped by Clemens Perscher (APS, USA).

• “NanoPeakCell” allows the pre-treatement of serial crystallography written by Nicolas Coquelle (IBS,
France)

• “Dpdak” is an open source tool for (online) analyzing large sequences of small angle scattering data [Dpdak]

1.6 Conclusion

The library pyFAI was developed with two main goals:

• Performing azimuthal integration with a clean programming interface.

• No compromise on the quality of the results is accepted: a careful management of the geometry and precise
pixel splitting ensures total and local intensity preservation.

PyFAI is the first implementation of an azimuthal integration algorithm on a GPUs as far as we are aware of, and
the stated twenty-fold speed up opens the door to a new kind of analysis, not even considered before. With a
good interface close to the camera, we believe PyFAI is able to sustain the data streams from the next generation
high-speed detectors.

1.6.1 Acknowledgments

Porting pyFAI to GPU would have not been possible without the financial support of LinkSCEEM-2 (RI-261600).

12 Chapter 1. General introduction to PyFAI

CHAPTER

TWO

COOKBOOK RECIPES

Cookbook are short tutorials: 1 page, 5 minutes to read.

2.1 Calibration of a diffraction setup

Author: Jérôme Kieffer

Date: 20/01/2015

Keywords: Calibration

Target: Scientists

Associated video: http://www.edna-site.org/pub/calibration/calib.flv

2.1.1 Review your calibration image

As viewer, try fabio_viewer from the FabIO package If you need to pre-process your data, look at pyFAI-average.
In this example we have used a “max filter” over 20 frames using pyFAI-average.

2.1.2 Get all additional data

• calibrant used, here LaB6

• the energy or the wavelength

• detector geometry

• masks, ...

2.1.3 Start pyFAI-calib

Use the man page (or –help) to see all options

2.1.4 Pick peaks

• A few (5) points in the most inner

• Increase the counter to indicate the ring number

• Pick some extra point in outer ring

• right click to pick a point !

13

http://www.edna-site.org/pub/calibration/calib.flv

pyFAI Documentation, Release 0.11.0

2.1.5 Review the group of peaks

Press Enter to do so... and check the ring assignment

The position of the expected rings is overlaid to the image Un-zoom to view them !

2.1.6 Acquire some more control points

• Use the recalib to extract new data-points

• free/fix/bound then refine

2.1.7 Visualize the integrated patterns

• integrate to view the integrated pattern

• then extract a few extra rings ...

• the geometry is displayed on the screen

2.1.8 Quit

All different geometries have been saved into the .poni file. It can directly be used for integration

That’s all.

2.2 Azimuthal integration using the graphical user interface

Author: Jérôme Kieffer

Date: 20/01/2015

Keywords: Integration

Target: Scientists

Associated video: http://www.edna-site.org/pub/calibration/integration.flv

2.2.1 Look at your integrated patterns

PyFAI can perform 1D or 2D integration. To view 1D patterns, I will use grace Let’s look at the integrated patterns
obtained during calibration.

As you can see, only the 10 rings used for calibration are well defined.

This file is a text file containing as header all metadata needed to determine the geometry.

2D integrated pattern (aka cake images) are EDF images. Try fabio_viewer to see them.

Once again check the header of the file and the associated metadata.

2.2.2 Integrate a bunch of images

We will work with the 20 images used for the calibration.

2.2.3 Start pyFAI-intgrate

Either select files to process using the file-dialog or provide them on the command line.

14 Chapter 2. Cookbook recipes

http://www.edna-site.org/pub/calibration/integration.flv

pyFAI Documentation, Release 0.11.0

2.2.4 Set the geometry

Simply load the PONI file and check the populated fields.

2.2.5 Azimuthal integration options

Check the dark/flat/ ... options Use the check-box to activate the option.

Do NOT forget to specify the number of radial bins !

2.2.6 Select the device for processing

Unless the processing will be done on the CPU using OpenMP.

Press OK to start the processing.

The generation of the Look-Up table takes a few seconds then all files get processed quickly

2.2.7 Run it again to perform caking

Same a previously ... but provide a number of azimuthal bins !

2.2.8 Visualize the integrated patterns

Once again I used grace and fabio_viewer to display the result.

That’s all.

TODO

TODO

For more in depth explanation, see the tutorials section.

more in depth explanation ... To come

2.2. Azimuthal integration using the graphical user interface 15

pyFAI Documentation, Release 0.11.0

16 Chapter 2. Cookbook recipes

CHAPTER

THREE

PYFAI SCRIPTS MANUAL

While pyFAI is first and foremost a Python library to be used by developers, a set of scripts is provided to process
a full diffraction experiment on the command line without knowing anything about Python. Those scripts can be
divided into 3 categories: pre-processing tools which prepare the dataset for the calibration tool. The calibration is
the determination of the geometry of the experimental setup using Debye-Scherrer rings of a reference compound
(or calibrant). Finally a full dataset can be integrated using different tools targeted at different experiments.

Pre-processing tools:

• drawMask_pymca: tool for drawing a mask on top of an image

• pyFAI-average: tool for averaging/median/... filtering images (i.e. for dark current)

Calibration tools:

• pyFAI-calib: manually select the rings and refine the geometry

• pyFAI-recalib: automatic ring extraction to refine the geometry (deprecated: see “recalib” option in
pyFAI-calib)

• MX-calibrate: Calibrate automatically a set of images taken at various detector distances

• check_calib: checks the calibration of an image at the sub-pixel level (deprecated: see “validate”
option in pyFAI-calib)

Azimuthal integration tools:

• pyFAI-integrate: the only graphical interface for integration

• pyFAI-saxs: command line interface for small-angle scattering

• pyFAI-waxs: command line interface for powder difration

• diff_tomo: diffraction mapping&tomography tool

3.1 Preprocessing tool: pyFAI-average

3.1.1 Purpose

This tool is used to average out a set of dark current images using mean or median filter (along the image stack).
One can also reject outliers be specifying a cutoff (remove cosmic rays / zingers from dark)

It can also be used to merge many images from the same sample when using a small beam and reduce the spotty-
ness of Debye-Scherrer rings. In this case the “max-filter” is usually recommended.

3.1.2 Options:

Usage: pyFAI-average [options] -o output.edf file1.edf file2.edf ...

positional arguments: FILE Files to be processed

17

pyFAI Documentation, Release 0.11.0

optional arguments:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

-o OUTPUT, --output OUTPUT Output/ destination of average image

-m METHOD, --method METHOD Method used for averaging, can be ‘mean’(default) or
‘min’, ‘max’, ‘median’, ‘sum’, ‘quantiles’

-c CUTOFF, --cutoff CUTOFF Take the mean of the average +/- cutoff * std_dev.

-F FORMAT, --format FORMAT Output file/image format (by default EDF)

-d DARK, --dark DARK Dark noise to be subtracted

-f FLAT, --flat FLAT Flat field correction

-v, --verbose switch to verbose/debug mode

-q QUANTILES, --quantiles QUANTILES average out between two quantiles -q 0.20-
0.90

$ pyFAI-average --help
usage: pyFAI-average [options] [options] -o output.edf file1.edf file2.edf ...

This tool can be used to average out a set of dark current images using mean
or median filter (along the image stack). One can also reject outliers be
specifying a cutoff (remove cosmic rays / zingers from dark)

positional arguments:
FILE Files to be processed

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-o OUTPUT, --output OUTPUT

Output/ destination of average image
-m METHOD, --method METHOD

Method used for averaging, can be ’mean’(default) or
’min’, ’max’, ’median’, ’sum’, ’quantiles’

-c CUTOFF, --cutoff CUTOFF
Take the mean of the average +/- cutoff * std_dev.

-F FORMAT, --format FORMAT
Output file/image format (by default EDF)

-d DARK, --dark DARK Dark noise to be subtracted
-f FLAT, --flat FLAT Flat field correction
-v, --verbose switch to verbose/debug mode
-q QUANTILES, --quantiles QUANTILES

average out between two quantiles -q 0.20-0.90

It can also be used to merge many images from the same sample when using a
small beam and reduce the spotty-ness of Debye-Sherrer rings. In this case the
"max-filter" is usually recommended.

3.2 Mask generation tool: drawMask_pymca

3.2.1 Purpose

Draw a mask, i.e. an image containing the list of pixels which are considered invalid (no scintillator, module gap,
beam stop shadow, ...).

18 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

3.2. Mask generation tool: drawMask_pymca 19

pyFAI Documentation, Release 0.11.0

This will open a PyMca window and let you draw on the first image (provided) with different tools (brush, rectan-
gle selection, ...). When you are finished, come back to the console and press enter. The mask image is saved into
file1-masked.edf. Optionally the script will print the number of pixel masked and the intensity masked (as well on
other files provided in input)

Usage: drawMask_pymca [options] file1.edf file2.edf ...

3.2.2 Options:

--version show program’s version number and exit

-h, --help show help message and exit

Optionally the script will print the number of pixel masked and the intensity masked (as well on other files provided
in input)

$ drawMask_pymca --help
API 1 -> Console widget not available
usage: drawMask_pymca file1.edf file2.edf ...

Draw a mask, i.e. an image containing the list of pixels which are considered
invalid (no scintillator, module gap, beam stop shadow, ...). This will open a
PyMca window and let you draw on the first image (provided) with different
tools (brush, rectangle selection, ...). When you are finished, come back to
the console and press enter.

positional arguments:
FILE Files to be processed

optional arguments:
-h, --help show this help message and exit
-v, --version show program’s version number and exit

The mask image is saved into file1-masked.edf. Optionally the script will
print the number of pixel masked and the intensity masked (as well on other
files provided in input)

3.3 Preprocessing tool: detector2nexus

Convert a complex detector definition (multiple modules, possibly in 3D) into a single NeXus detector definition
together with the mask (and much more in the future)

3.3.1 Purpose

Convert a detector to NeXus detector definition for pyFAI.

3.3.2 Usage:

detector2nexus [options] [options] -o nxs.h5

3.3.3 options:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

-o OUTPUT, --output OUTPUT Output nexus file, unless detector_name.h5

20 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

-n NAME, --name NAME name of the detector

-m MASK, --mask MASK mask corresponding to the detector

-D DETECTOR, --detector DETECTOR Base detector name (see documentation
of pyFAI.detectors

-s SPLINEFILE, --splinefile SPLINEFILE Geometric distortion file from FIT2D

-dx DX, –x-corr DX Geometric correction for pilatus -dy DY, –y-corr DY Geometric correction for
pilatus -p PIXEL, –pixel PIXEL

pixel size (comma separated): x,y

-S SHAPE, --shape SHAPE shape of the detector (comma separated): x,y

-d DARK, --dark DARK Dark noise to be subtracted

-f FLAT, --flat FLAT Flat field correction

-v, --verbose switch to verbose/debug mode

$ detector2nexus --help
usage: detector2nexus [options] [options] -o nxs.h5

Convert a complex detector definition (multiple modules, possibly in 3D) into
a single NeXus detector definition together with the mask (and much more in
the future)

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-o OUTPUT, --output OUTPUT

Output nexus file, unless detector_name.h5
-n NAME, --name NAME name of the detector
-m MASK, --mask MASK mask corresponding to the detector
-D DETECTOR, --detector DETECTOR

Base detector name (see documentation of
pyFAI.detectors

-s SPLINEFILE, --splinefile SPLINEFILE
Geometric distortion file from FIT2D

-dx DX, --x-corr DX Geometric correction for pilatus
-dy DY, --y-corr DY Geometric correction for pilatus
-p PIXEL, --pixel PIXEL

pixel size (comma separated): x,y
-S SHAPE, --shape SHAPE

shape of the detector (comma separated): x,y
-d DARK, --dark DARK Dark noise to be subtracted
-f FLAT, --flat FLAT Flat field correction
-v, --verbose switch to verbose/debug mode

This summarizes detector2nexus

3.4 Calibration tool: pyFAI-calib

3.4.1 Purpose

Calibrate the diffraction setup geometry based on Debye-Sherrer rings images without a priori knowledge of your
setup. You will need to provide a calibrant or a “d-spacing” file containing the spacing of Miller plans in Angstrom
(in decreasing order).

If you are using a standard calibrant, look at https://github.com/kif/pyFAI/tree/master/calibration or search in the
American Mineralogist database: [AMD] or in the [COD]. The –calibrant option is mandatory !

3.4. Calibration tool: pyFAI-calib 21

https://github.com/kif/pyFAI/tree/master/calibration

pyFAI Documentation, Release 0.11.0

Calibrants available: Ni, CrOx, NaCl, Si_SRM640e, Si_SRM640d, Si_SRM640a, Si_SRM640b, Cr2O3, AgBh,
Si_SRM640, CuO, PBBA, alpha_Al2O3, SI_SRM640c, quartz, C14H30O, cristobaltite, Si, LaB6, CeO2,
LaB6_SRM660a, LaB6_SRM660b, LaB6_SRM660c, TiO2, ZnO, Al, Au

You will need in addition:

• The radiation energy (in keV) or its wavelength (in A)

• The description of the detector:

• it name or

• it’s pixel size or

• the spline file describing its distortion or

• the NeXus file describing the distortion

Many option are available among those:

• dark-current / flat field corrections

• Masking of bad regions

• reconstruction of missing region (module based detectors), see option -r

• Polarization correction

• Automatic desaturation (time consuming!)

• Intensity weighted least-squares refinements

The output of this program is a “PONI” file containing the detector description and the 6 refined parameters
(distance, center, rotation) and wavelength. An 1D and 2D diffraction patterns are also produced. (.dat and .azim
files)

3.4.2 Usage:

pyFAI-calib [options] -w 1 -D detector -c calibrant imagefile.edf

3.4.3 Options:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

-o FILE, --out FILE Filename where processed image is saved

-v, --verbose switch to debug/verbose mode

-c FILE, --calibrant FILE Calibrant name or file containing d-spacing of the refer-
ence sample (MANDATORY, case sensitive !)

-w WAVELENGTH, --wavelength WAVELENGTH wavelength of the X-Ray
beam in Angstrom. Mandatory

-e ENERGY, --energy ENERGY energy of the X-Ray beam in keV
(hc=12.398419292keV.A).

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR
polarization factor, from -1 (vertical) to +1 (horizontal), default
is None (no correction), synchrotrons are around 0.95

-i FILE, --poni FILE file containing the diffraction parameter (poni-file). MANDA-
TORY for pyFAI-recalib!

-b BACKGROUND, --background BACKGROUND Automatic background sub-
traction if no value are provided

22 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

-d DARK, --dark DARK list of comma separated dark images to average and sub-
tract

-f FLAT, --flat FLAT list of comma separated flat images to average and divide

-s SPLINE, --spline SPLINE spline file describing the detector distortion

-D DETECTOR_NAME, --detector DETECTOR_NAME Detector name (instead
of pixel size+spline)

-m MASK, --mask MASK file containing the mask (for image reconstruction)

-n NPT, --pt NPT file with datapoints saved. Default: basename.npt

--filter FILTER select the filter, either mean(default), max or median

-l DISTANCE, --distance DISTANCE sample-detector distance in millimeter. De-
fault: 100mm

--dist DIST sample-detector distance in meter. Default: 0.1m

--poni1 PONI1 poni1 coordinate in meter. Default: center of detector

--poni2 PONI2 poni2 coordinate in meter. Default: center of detector

--rot1 ROT1 rot1 in radians. default: 0

--rot2 ROT2 rot2 in radians. default: 0

--rot3 ROT3 rot3 in radians. default: 0

--fix-dist fix the distance parameter

--free-dist free the distance parameter. Default: Activated

--fix-poni1 fix the poni1 parameter

--free-poni1 free the poni1 parameter. Default: Activated

--fix-poni2 fix the poni2 parameter

--free-poni2 free the poni2 parameter. Default: Activated

--fix-rot1 fix the rot1 parameter

--free-rot1 free the rot1 parameter. Default: Activated

--fix-rot2 fix the rot2 parameter

--free-rot2 free the rot2 parameter. Default: Activated

--fix-rot3 fix the rot3 parameter

--free-rot3 free the rot3 parameter. Default: Activated

--fix-wavelength fix the wavelength parameter. Default: Activated

--free-wavelength free the wavelength parameter. Default: Deactivated

--tilt Allow initially detector tilt to be refined (rot1, rot2, rot3). De-
fault: Activated

--no-tilt Deactivated tilt refinement and set all rotation to 0

--saturation SATURATION consider all pixel>max*(1-saturation) as saturated and
reconstruct them, default: 0 (deactivated)

--weighted weight fit by intensity, by default not.

--npt NPT_1D Number of point in 1D integrated pattern, Default: 1024

--npt-azim NPT_2D_AZIM Number of azimuthal sectors in 2D integrated images.
Default: 360

3.4. Calibration tool: pyFAI-calib 23

pyFAI Documentation, Release 0.11.0

--npt-rad NPT_2D_RAD Number of radial bins in 2D integrated images. Default:
400

--unit UNIT Valid units for radial range: 2th_deg, 2th_rad, q_nm^-1, q_A^-1,
r_mm. Default: 2th_deg

--no-gui force the program to run without a Graphical interface

--no-interactive force the program to run and exit without prompting for refine-
ments

-r, --reconstruct Reconstruct image where data are masked or <0 (for Pilatus de-
tectors or detectors with modules)

-g GAUSSIAN, --gaussian GAUSSIAN Size of the gaussian kernel. Size of the gap
(in pixels) between two consecutive rings, by default 100 In-
crease the value if the arc is not complete; decrease the value if
arcs are mixed together.

--square Use square kernel shape for neighbor search instead of diamond
shape

-p PIXEL, --pixel PIXEL size of the pixel in micron

3.4.4 Tips & Tricks

PONI-files are ASCII files and each new refinement adds an entry in the file. So if you are unhappy with the last
step, just edit this file and remove the last entry (time-stamps will help you).

3.4.5 Example of usage:

$ pyFAI-calib --help
usage: pyFAI-calib [options] -w 1 -D detector -c calibrant.D imagefile.edf

Calibrate the diffraction setup geometry based on Debye-Sherrer rings images
without a priori knowledge of your setup. You will need to provide a calibrant
or a "d-spacing" file containing the spacing of Miller plans in Angstrom (in
decreasing order). Calibrants available: Ni, CrOx, NaCl, Si_SRM640e,
Si_SRM640d, Si_SRM640a, Si_SRM640c, alpha_Al2O3, Cr2O3, AgBh, Si_SRM640, CuO,
PBBA, Si_SRM640b, SI_SRM640c, quartz, C14H30O, cristobaltite, Si, LaB6, CeO2,
LaB6_SRM660a, LaB6_SRM660b, LaB6_SRM660c, TiO2, ZnO, Al, Au or search in the
American Mineralogist database: http://rruff.geo.arizona.edu/AMS/amcsd.php The
--calibrant option is mandatory !

positional arguments:
FILE List of files to calibrate

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-o FILE, --out FILE Filename where processed image is saved
-v, --verbose switch to debug/verbose mode
-c FILE, --calibrant FILE

Calibrant name or file containing d-spacing of the
reference sample (MANDATORY, case sensitive !)

-w WAVELENGTH, --wavelength WAVELENGTH
wavelength of the X-Ray beam in Angstrom. Mandatory

-e ENERGY, --energy ENERGY
energy of the X-Ray beam in keV
(hc=12.398419292keV.A).

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR
polarization factor, from -1 (vertical) to +1

24 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

(horizontal), default is None (no correction),
synchrotrons are around 0.95

-i FILE, --poni FILE file containing the diffraction parameter (poni-file).
MANDATORY for pyFAI-recalib!

-b BACKGROUND, --background BACKGROUND
Automatic background subtraction if no value are
provided

-d DARK, --dark DARK list of comma separated dark images to average and
subtract

-f FLAT, --flat FLAT list of comma separated flat images to average and
divide

-s SPLINE, --spline SPLINE
spline file describing the detector distortion

-D DETECTOR_NAME, --detector DETECTOR_NAME
Detector name (instead of pixel size+spline)

-m MASK, --mask MASK file containing the mask (for image reconstruction)
-n NPT, --pt NPT file with datapoints saved. Default: basename.npt
--filter FILTER select the filter, either mean(default), max or median
-l DISTANCE, --distance DISTANCE

sample-detector distance in millimeter. Default: 100mm
--dist DIST sample-detector distance in meter. Default: 0.1m
--poni1 PONI1 poni1 coordinate in meter. Default: center of detector
--poni2 PONI2 poni2 coordinate in meter. Default: center of detector
--rot1 ROT1 rot1 in radians. default: 0
--rot2 ROT2 rot2 in radians. default: 0
--rot3 ROT3 rot3 in radians. default: 0
--fix-dist fix the distance parameter
--free-dist free the distance parameter. Default: Activated
--fix-poni1 fix the poni1 parameter
--free-poni1 free the poni1 parameter. Default: Activated
--fix-poni2 fix the poni2 parameter
--free-poni2 free the poni2 parameter. Default: Activated
--fix-rot1 fix the rot1 parameter
--free-rot1 free the rot1 parameter. Default: Activated
--fix-rot2 fix the rot2 parameter
--free-rot2 free the rot2 parameter. Default: Activated
--fix-rot3 fix the rot3 parameter
--free-rot3 free the rot3 parameter. Default: Activated
--fix-wavelength fix the wavelength parameter. Default: Activated
--free-wavelength free the wavelength parameter. Default: Deactivated
--tilt Allow initially detector tilt to be refined (rot1,

rot2, rot3). Default: Activated
--no-tilt Deactivated tilt refinement and set all rotation to 0
--saturation SATURATION

consider all pixel>max*(1-saturation) as saturated and
reconstruct them, default: 0 (deactivated)

--weighted weight fit by intensity, by default not.
--npt NPT_1D Number of point in 1D integrated pattern, Default:

1024
--npt-azim NPT_2D_AZIM

Number of azimuthal sectors in 2D integrated images.
Default: 360

--npt-rad NPT_2D_RAD Number of radial bins in 2D integrated images.
Default: 400

--unit UNIT Valid units for radial range: 2th_deg, 2th_rad,
q_nm^-1, q_A^-1, r_mm. Default: 2th_deg

--no-gui force the program to run without a Graphical interface
--no-interactive force the program to run and exit without prompting

for refinements
-r, --reconstruct Reconstruct image where data are masked or <0 (for

Pilatus detectors or detectors with modules)
-g GAUSSIAN, --gaussian GAUSSIAN

Size of the gaussian kernel. Size of the gap (in

3.4. Calibration tool: pyFAI-calib 25

pyFAI Documentation, Release 0.11.0

pixels) between two consecutive rings, by default 100
Increase the value if the arc is not complete;
decrease the value if arcs are mixed together.

--square Use square kernel shape for neighbor search instead of
diamond shape

-p PIXEL, --pixel PIXEL
size of the pixel in micron

The output of this program is a "PONI" file containing the detector
description and the 6 refined parameters (distance, center, rotation) and
wavelength. An 1D and 2D diffraction patterns are also produced. (.dat and
.azim files)

Pilatus 1M image of Silver Behenate taken at ESRF-BM26:

pyFAI-calib -D Pilatus1M -c AgBh -r -w 1.0 test/testimages/Pilatus1M.edf

We use the parameter -r to reconstruct the missing part between the modules of the Pilatus detector.

Half a FReLoN CCD image of Lantanide hexaboride taken at ESRF-ID11:

pyFAI-calib -s test/testimages/halfccd.spline -c LaB6 -w 0.3 test/testimages/halfccd.edf -g 250

This image is rather spotty. We need to blur a lot to get the continuity of the rings. This is achieved by the -g
parameter. While the sample is well diffracting and well known, the wavelength has been guessed. One should
refine the wavelength when the peaks extracted are correct

All those images are part of the test-suite of pyFAI. To download them from internet, run

python setup.py build test

Downloaded test images are located in tests/testimages

3.5 Calibration tool: pyFAI-recalib

pyFAI-recalib is now obsolete. All feature provided by it are now available as part of pyFAI-calib.

$ pyFAI-recalib --help
usage: pyFAI-recalib [options] -i ponifile -w 1 -c calibrant.D imagefile.edf

Calibrate the diffraction setup geometry based on Debye-Sherrer rings images
with a priori knowledge of your setup (an input PONI-file). You will need to
provide a calibrant or a "d-spacing" file containing the spacing of Miller
plans in Angstrom (in decreasing order). Calibrants available: Ni, CrOx, NaCl,
Si_SRM640e, Si_SRM640d, Si_SRM640a, Si_SRM640c, alpha_Al2O3, Cr2O3, AgBh,
Si_SRM640, CuO, PBBA, Si_SRM640b, SI_SRM640c, quartz, C14H30O, cristobaltite,
Si, LaB6, CeO2, LaB6_SRM660a, LaB6_SRM660b, LaB6_SRM660c, TiO2, ZnO, Al, Au or
search in the American Mineralogist database:
http://rruff.geo.arizona.edu/AMS/amcsd.php The --calibrant option is mandatory
!

positional arguments:
FILE List of files to calibrate

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-o FILE, --out FILE Filename where processed image is saved
-v, --verbose switch to debug/verbose mode

26 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

-c FILE, --calibrant FILE
Calibrant name or file containing d-spacing of the
reference sample (MANDATORY, case sensitive !)

-w WAVELENGTH, --wavelength WAVELENGTH
wavelength of the X-Ray beam in Angstrom. Mandatory

-e ENERGY, --energy ENERGY
energy of the X-Ray beam in keV
(hc=12.398419292keV.A).

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR
polarization factor, from -1 (vertical) to +1
(horizontal), default is None (no correction),
synchrotrons are around 0.95

-i FILE, --poni FILE file containing the diffraction parameter (poni-file).
MANDATORY for pyFAI-recalib!

-b BACKGROUND, --background BACKGROUND
Automatic background subtraction if no value are
provided

-d DARK, --dark DARK list of comma separated dark images to average and
subtract

-f FLAT, --flat FLAT list of comma separated flat images to average and
divide

-s SPLINE, --spline SPLINE
spline file describing the detector distortion

-D DETECTOR_NAME, --detector DETECTOR_NAME
Detector name (instead of pixel size+spline)

-m MASK, --mask MASK file containing the mask (for image reconstruction)
-n NPT, --pt NPT file with datapoints saved. Default: basename.npt
--filter FILTER select the filter, either mean(default), max or median
-l DISTANCE, --distance DISTANCE

sample-detector distance in millimeter. Default: 100mm
--dist DIST sample-detector distance in meter. Default: 0.1m
--poni1 PONI1 poni1 coordinate in meter. Default: center of detector
--poni2 PONI2 poni2 coordinate in meter. Default: center of detector
--rot1 ROT1 rot1 in radians. default: 0
--rot2 ROT2 rot2 in radians. default: 0
--rot3 ROT3 rot3 in radians. default: 0
--fix-dist fix the distance parameter
--free-dist free the distance parameter. Default: Activated
--fix-poni1 fix the poni1 parameter
--free-poni1 free the poni1 parameter. Default: Activated
--fix-poni2 fix the poni2 parameter
--free-poni2 free the poni2 parameter. Default: Activated
--fix-rot1 fix the rot1 parameter
--free-rot1 free the rot1 parameter. Default: Activated
--fix-rot2 fix the rot2 parameter
--free-rot2 free the rot2 parameter. Default: Activated
--fix-rot3 fix the rot3 parameter
--free-rot3 free the rot3 parameter. Default: Activated
--fix-wavelength fix the wavelength parameter. Default: Activated
--free-wavelength free the wavelength parameter. Default: Deactivated
--tilt Allow initially detector tilt to be refined (rot1,

rot2, rot3). Default: Activated
--no-tilt Deactivated tilt refinement and set all rotation to 0
--saturation SATURATION

consider all pixel>max*(1-saturation) as saturated and
reconstruct them, default: 0 (deactivated)

--weighted weight fit by intensity, by default not.
--npt NPT_1D Number of point in 1D integrated pattern, Default:

1024
--npt-azim NPT_2D_AZIM

Number of azimuthal sectors in 2D integrated images.
Default: 360

--npt-rad NPT_2D_RAD Number of radial bins in 2D integrated images.

3.5. Calibration tool: pyFAI-recalib 27

pyFAI Documentation, Release 0.11.0

Default: 400
--unit UNIT Valid units for radial range: 2th_deg, 2th_rad,

q_nm^-1, q_A^-1, r_mm. Default: 2th_deg
--no-gui force the program to run without a Graphical interface
--no-interactive force the program to run and exit without prompting

for refinements
-r MAX_RINGS, --ring MAX_RINGS

maximum number of rings to extract. Default: all
accessible

-k, --keep Keep existing control point and append new

The main difference with pyFAI-calib is the way control-point hence Debye-
Sherrer rings are extracted. While pyFAI-calib relies on the contiguity of a
region of peaks called massif; pyFAI-recalib knows approximatly the geometry
and is able to select the region where the ring should be. From this region it
selects automatically the various peaks; making pyFAI-recalib able to run
without graphical interface and without human intervention (--no-gui and --no-
interactive options). Note that ‘pyFAI-recalib‘ program is obsolete as the
same functionnality is available from within pyFAI-calib, using the ‘recalib‘
command in the refinement process. Two option are available for recalib: the
numbe of rings to extract (similar to the -r option of this program) and a new
option which lets you choose between the original ‘massif‘ algorithm and newer
ones like ‘blob‘ and ‘watershed‘ detection.

3.6 Calibration tool: check_calib

3.6.1 Purpose

Check_calib is a deprecated tool aiming at validating both the geometric calibration and everything else like flat-
field correction, distortion correction, at a sub-pixel level. Pleas use the validate, validate2 and chiplot commands
in pyFAI-calib, during the refinement process to obtain the same output with more options.

$ check_calib --help
usage: check_calib [options] -p param.poni image.edf

Check_calib is a research tool aiming at validating both the geometric
calibration and everything else like flat-field correction, distortion
correction, at a sub-pixel level. Note that ‘check_calib‘ program is obsolete
as the same functionnality is available from within pyFAI-calib, using the
‘validate‘ command in the refinement process.

positional arguments:
FILE Image file to check calibration for

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-v, --verbose switch to debug mode
-d FILE, --dark FILE file containing the dark images to subtract
-f FILE, --flat FILE file containing the flat images to divide
-m FILE, --mask FILE file containing the mask
-p FILE, --poni FILE file containing the diffraction parameter (poni-file)
-e ENERGY, --energy ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)
-w WAVELENGTH, --wavelength WAVELENGTH

wavelength of the X-Ray beam in Angstrom

28 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

3.7 Calibration tool: MX-calibrate

3.7.1 Purpose

Calibrate automatically a set of frames taken at various sample-detector distance.

This tool has been developed for ESRF MX-beamlines where an acceptable calibration is usually present is the
header of the image. PyFAI reads it and does a “recalib” on each of them before exporting a linear regression of
all parameters versus this distance.

Most standard calibrants are directly installed together with pyFAI. If you prefer using your own, you can provide
a “d-spacing” file containing the spacing of Miller plans in Angstrom (in decreasing order). Most crystal powders
used for calibration are available in the American Mineralogist database [AMD] or in the [COD].

3.7.2 Usage:

MX-Calibrate -w 1.54 -c CeO2 file1.cbf file2.cbf ...

3.7.3 Options:

usage: MX-Calibrate -w 1.54 -c CeO2 file1.cbf file2.cbf ...

Calibrate automatically a set of frames taken at various sample-detector distance. Return the linear regression of
the fit in funtion of the sample- setector distance.

positional arguments: FILE List of files to calibrate

optional arguments:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

-v, --verbose switch to debug/verbose mode

-c FILE, --calibrant FILE file containing d-spacing of the calibrant reference sample
(MANDATORY)

-w WAVELENGTH, --wavelength WAVELENGTH wavelength of the X-Ray beam in
Angstrom

-e ENERGY, --energy ENERGY energy of the X-Ray beam in keV
(hc=12.398419292keV.A)

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR
polarization factor, from -1 (vertical) to +1 (horizontal), default
is 0, synchrotrons are around 0.95

-b BACKGROUND, --background BACKGROUND Automatic background subtraction
if no value are provided

-d DARK, --dark DARK list of dark images to average and subtract

-f FLAT, --flat FLAT list of flat images to average and divide

-s SPLINE, --spline SPLINE spline file describing the detector distortion

-p PIXEL, --pixel PIXEL size of the pixel in micron

-D DETECTOR_NAME, --detector DETECTOR_NAME Detector name (instead of
pixel size+spline)

-m MASK, --mask MASK file containing the mask (for image reconstruction)

--filter FILTER select the filter, either mean(default), max or median

3.7. Calibration tool: MX-calibrate 29

pyFAI Documentation, Release 0.11.0

--saturation SATURATION consider all pixel>max*(1-saturation) as saturated and recon-
struct them

-r MAX_RINGS, --ring MAX_RINGS maximum number of rings to extract

--weighted weight fit by intensity

-l DISTANCE, --distance DISTANCE sample-detector distance in millimeter

--tilt Allow initially detector tilt to be refined (rot1, rot2, rot3). Default:
Activated

--no-tilt Deactivated tilt refinement and set all rotation to 0

--dist DIST sample-detector distance in meter

--poni1 PONI1 poni1 coordinate in meter

--poni2 PONI2 poni2 coordinate in meter

--rot1 ROT1 rot1 in radians

--rot2 ROT2 rot2 in radians

--rot3 ROT3 rot3 in radians

--fix-dist fix the distance parameter

--free-dist free the distance parameter

--fix-poni1 fix the poni1 parameter

--free-poni1 free the poni1 parameter

--fix-poni2 fix the poni2 parameter

--free-poni2 free the poni2 parameter

--fix-rot1 fix the rot1 parameter

--free-rot1 free the rot1 parameter

--fix-rot2 fix the rot2 parameter

--free-rot2 free the rot2 parameter

--fix-rot3 fix the rot3 parameter

--free-rot3 free the rot3 parameter

--fix-wavelength fix the wavelength parameter

--free-wavelength free the wavelength parameter

--no-gui force the program to run without a Graphical interface

--gui force the program to run with a Graphical interface

--no-interactive force the program to run and exit without prompting for refinements

--interactive force the program to prompt for refinements

--peak-picker PEAKPICKER Uses the ‘massif’, ‘blob’ or ‘watershed’ peak-picker algo-
rithm (default: blob)

This tool has been developed for ESRF MX-beamlines where an acceptable calibration is usually present is the
header of the image. PyFAI reads it and does a “recalib” on each of them before exporting a linear regression of
all parameters versus this distance.

30 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

3.7.4 Example:

$ MX-calibrate --help
usage: MX-Calibrate -w 1.54 -c CeO2 file1.cbf file2.cbf ...

Calibrate automatically a set of frames taken at various sample-detector
distance. Return the linear regression of the fit in funtion of the sample-
setector distance.

positional arguments:
FILE List of files to calibrate

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-v, --verbose switch to debug/verbose mode
-c FILE, --calibrant FILE

file containing d-spacing of the calibrant reference
sample (MANDATORY)

-w WAVELENGTH, --wavelength WAVELENGTH
wavelength of the X-Ray beam in Angstrom

-e ENERGY, --energy ENERGY
energy of the X-Ray beam in keV (hc=12.398419292keV.A)

-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR
polarization factor, from -1 (vertical) to +1
(horizontal), default is 0, synchrotrons are around
0.95

-b BACKGROUND, --background BACKGROUND
Automatic background subtraction if no value are
provided

-d DARK, --dark DARK list of dark images to average and subtract
-f FLAT, --flat FLAT list of flat images to average and divide
-s SPLINE, --spline SPLINE

spline file describing the detector distortion
-p PIXEL, --pixel PIXEL

size of the pixel in micron
-D DETECTOR_NAME, --detector DETECTOR_NAME

Detector name (instead of pixel size+spline)
-m MASK, --mask MASK file containing the mask (for image reconstruction)
--filter FILTER select the filter, either mean(default), max or median
--saturation SATURATION

consider all pixel>max*(1-saturation) as saturated and
reconstruct them

-r MAX_RINGS, --ring MAX_RINGS
maximum number of rings to extract

--weighted weight fit by intensity
-l DISTANCE, --distance DISTANCE

sample-detector distance in millimeter
--tilt Allow initially detector tilt to be refined (rot1,

rot2, rot3). Default: Activated
--no-tilt Deactivated tilt refinement and set all rotation to 0
--dist DIST sample-detector distance in meter
--poni1 PONI1 poni1 coordinate in meter
--poni2 PONI2 poni2 coordinate in meter
--rot1 ROT1 rot1 in radians
--rot2 ROT2 rot2 in radians
--rot3 ROT3 rot3 in radians
--fix-dist fix the distance parameter
--free-dist free the distance parameter
--fix-poni1 fix the poni1 parameter
--free-poni1 free the poni1 parameter
--fix-poni2 fix the poni2 parameter
--free-poni2 free the poni2 parameter

3.7. Calibration tool: MX-calibrate 31

pyFAI Documentation, Release 0.11.0

--fix-rot1 fix the rot1 parameter
--free-rot1 free the rot1 parameter
--fix-rot2 fix the rot2 parameter
--free-rot2 free the rot2 parameter
--fix-rot3 fix the rot3 parameter
--free-rot3 free the rot3 parameter
--fix-wavelength fix the wavelength parameter
--free-wavelength free the wavelength parameter
--no-gui force the program to run without a Graphical interface
--gui force the program to run with a Graphical interface
--no-interactive force the program to run and exit without prompting

for refinements
--interactive force the program to prompt for refinements
--peak-picker PEAKPICKER

Uses the ’massif’, ’blob’ or ’watershed’ peak-picker
algorithm (default: blob)

This tool has been developed for ESRF MX-beamlines where an acceptable
calibration is usually present is the header of the image. PyFAI reads it and
does a "recalib" on each of them before exporting a linear regression of all
parameters versus this distance.

3.8 Integration tool: pyFAI-integrate

3.8.1 Purpose

PyFAI-integrate is a graphical interface (based on Python/Qt4) to perform azimuthal integration on a set of files.
It exposes most of the important options available within pyFAI and allows you to select a GPU (or an openCL
platform) to perform the calculation on.

3.8.2 Usage

pyFAI-integrate [options] file1.edf file2.edf ...

3.8.3 Options:

--version show program’s version number and exit

-h, --help show help message and exit

-v, --verbose switch to verbose/debug mode

-o OUTPUT, --output=OUTPUT Directory or file where to store the output data

3.8.4 Tips & Tricks:

PyFAI-integrate saves all parameters in a .azimint.json (hidden) file. This JSON file is an ascii file which can be
edited and used to configure online data analysis using the LImA plugin of pyFAI.

Nota: there is bug in debian6 making the GUI crash (to be fixed inside pyqt) http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=697348

32 Chapter 3. pyFAI scripts manual

http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=697348
http://bugs.debian.org/cgi-bin/bugreport.cgi?bug=697348

pyFAI Documentation, Release 0.11.0

3.8. Integration tool: pyFAI-integrate 33

pyFAI Documentation, Release 0.11.0

3.8.5 Example:

$ pyFAI-integrate --help
usage: pyFAI-integrate [options] file1.edf file2.edf ...

PyFAI-integrate is a graphical interface (based on Python/Qt4) to perform
azimuthal integration on a set of files. It exposes most of the important
options available within pyFAI and allows you to select a GPU (or an openCL
platform) to perform the calculation on.

positional arguments:
FILE Files to be integrated

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-v, --verbose switch to verbose/debug mode
-o OUTPUT, --output OUTPUT

Directory or file where to store the output data
-f FORMAT, --format FORMAT

output data format (can be HDF5)
-s SLOW, --slow-motor SLOW

Dimension of the scan on the slow direction (makes
sense only with HDF5)

-r RAPID, --fast-motor RAPID
Dimension of the scan on the fast direction (makes
sense only with HDF5)

--no-gui Process the dataset without showing the user
interface.

PyFAI-integrate saves all parameters in a .azimint.json (hidden) file. This
JSON file is an ascii file which can be edited and used to configure online
data analysis using the LImA plugin of pyFAI. Nota: there is bug in debian6
making the GUI crash (to be fixed inside pyqt) http://bugs.debian.org/cgi-
bin/bugreport.cgi?bug=697348

3.9 Integration tool: diff_tomo

3.9.1 Purpose

Azimuthal integration for diffraction tomography.

Diffraction tomography is an experiment where 2D diffraction patterns are recorded while performing a 2D scan,
one (the slowest) in rotation around the sample center and the other (the fastest) along a translation through the
sample. Diff_tomo is a script (based on pyFAI and h5py) which allows the reduction of this 4D dataset into a 3D
dataset containing the rotations angle (hundreds), the translation step (hundreds) and the many diffraction angles
(thousands). The resulting dataset can be opened using PyMca roitool where the 1d dataset has to be selected as
last dimension. This file is not (yet) NeXus compliant.

This tool can be used for mapping experiments if one considers the slow scan direction as the rotation.

tips: If the number of files is too large, use double quotes around “*.edf”

3.9.2 Usage:

diff_tomo [options] -p ponifile imagefiles*

34 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

3.9.3 Options:

-h, --help show this help message and exit

-V, --version show program’s version number and exit

-o FILE, --output FILE HDF5 File where processed sinogram was saved, by default
diff_tomo.h5

-v, --verbose switch to verbose/debug mode, defaut: quiet

-P FILE, --prefix FILE Prefix or common base for all files

-e EXTENSION, --extension EXTENSION Process all files with this extension

-t NTRANS, --nTrans NTRANS number of points in translation. Mandatory

-r NROT, --nRot NROT number of points in rotation. Mandatory

-c NDIFF, --nDiff NDIFF number of points in diffraction powder pattern, Mandatory

-d FILE, --dark FILE list of dark images to average and subtract

-f FILE, --flat FILE list of flat images to average and divide

-m FILE, --mask FILE file containing the mask, no mask by default

-p FILE, --poni FILE file containing the diffraction parameter (poni-file), Manda-
tory

-O OFFSET, --offset OFFSET do not process the first files

-g, --gpu process using OpenCL on GPU

-S, --stats show statistics at the end

Most of those options are mandatory to define the structure of the dataset.

$ diff_tomo --help
usage: diff_tomo [options] -p ponifile imagefiles*
If the number of files is too large, use double quotes like "*.edf"

Azimuthal integration for diffraction tomography. Diffraction tomography is an
experiment where 2D diffraction patterns are recorded while performing a 2D
scan, one (the slowest) in rotation around the sample center and the other
(the fastest) along a translation through the sample. Diff_tomo is a script
(based on pyFAI and h5py) which allows the reduction of this 4D dataset into a
3D dataset containing the rotations angle (hundreds), the translation step
(hundreds) and the many diffraction angles (thousands). The resulting dataset
can be opened using PyMca roitool where the 1d dataset has to be selected as
last dimension. This file is not (yet) NeXus compliant. This tool can be used
for mapping experiments if one considers the slow scan direction as the
rotation.

positional arguments:
FILE List of files to calibrate

optional arguments:
-h, --help show this help message and exit
-V, --version show program’s version number and exit
-o FILE, --output FILE

HDF5 File where processed sinogram was saved, by
default diff_tomo.h5

-v, --verbose switch to verbose/debug mode, defaut: quiet
-P FILE, --prefix FILE

Prefix or common base for all files
-e EXTENSION, --extension EXTENSION

Process all files with this extension
-t NTRANS, --nTrans NTRANS

3.9. Integration tool: diff_tomo 35

pyFAI Documentation, Release 0.11.0

number of points in translation. Mandatory
-r NROT, --nRot NROT number of points in rotation. Mandatory
-c NDIFF, --nDiff NDIFF

number of points in diffraction powder pattern,
Mandatory

-d FILE, --dark FILE list of dark images to average and subtract
-f FILE, --flat FILE list of flat images to average and divide
-m FILE, --mask FILE file containing the mask, no mask by default
-p FILE, --poni FILE file containing the diffraction parameter (poni-file),

Mandatory
-O OFFSET, --offset OFFSET

do not process the first files
-g, --gpu process using OpenCL on GPU
-S, --stats show statistics at the end

If the number of files is too large, use double quotes "*.edf"

3.10 Integration tool: pyFAI-saxs

3.10.1 Purpose

Azimuthal integration for SAXS users.

pyFAI-saxs is the SAXS script of pyFAI that allows data reduction (azimuthal integration) for Small Angle Scat-
tering with output axis in q space.

3.10.2 Usage:

pyFAI-saxs -p=param.poni -w1.54e-9 file.edf file2.edf file3.edf

Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-p PONIFILE PyFAI parameter file (.poni)

-n NPT Number of points in radial dimension

-w WAVELENGTH, --wavelength=WAVELENGTH wavelength of the X-Ray beam in
Angstrom

-e ENERGY, --energy=ENERGY energy of the X-Ray beam in keV
(hc=12.398419292keV.A)

-u DUMMY, --dummy=DUMMY dummy value for dead pixels

-U DELTA_DUMMY, --delta_dummy=DELTA_DUMMY delta dummy value

-m MASK, --mask=MASK name of the file containing the mask image

-d DARK, --dark=DARK name of the file containing the dark current

-f FLAT, --flat=FLAT name of the file containing the flat field

-P POLARIZATION_FACTOR, --polarization=POLARIZATION_FACTOR
Polarization factor, from -1 (vertical) to +1 (horizontal), default
is None for no correction, synchrotrons are around 0.95

--error-model=ERROR_MODEL Error model to use. Currently on ‘poisson’ is imple-
mented

36 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

--unit=UNIT unit for the radial dimension: can be q_nm^-1, q_A^-1, 2th_deg,
2th_rad or r_mm

--ext=EXT extension of the regrouped filename (.dat)

3.10.3 Example:

$ pyFAI-saxs --help
usage: pyFAI-saxs [options] -n 1000 -p ponifile file1.edf file2.edf ...

Azimuthal integration for SAXS users.

positional arguments:
FILE Files to integrated

optional arguments:
-h, --help show this help message and exit
-v, --version show program’s version number and exit
-p PONIFILE PyFAI parameter file (.poni)
-n NPT Number of points in radial dimension
-w WAVELENGTH, --wavelength WAVELENGTH

wavelength of the X-Ray beam in Angstrom
-e ENERGY, --energy ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)
-u DUMMY, --dummy DUMMY

dummy value for dead pixels
-U DELTA_DUMMY, --delta_dummy DELTA_DUMMY

delta dummy value
-m MASK, --mask MASK name of the file containing the mask image
-d DARK, --dark DARK name of the file containing the dark current
-f FLAT, --flat FLAT name of the file containing the flat field
-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR

Polarization factor, from -1 (vertical) to +1
(horizontal), default is None for no correction,
synchrotrons are around 0.95

--error-model ERROR_MODEL
Error model to use. Currently on ’poisson’ is
implemented

--unit UNIT unit for the radial dimension: can be q_nm^-1, q_A^-1,
2th_deg, 2th_rad or r_mm

--ext EXT extension of the regrouped filename (.dat)

pyFAI-saxs is the SAXS script of pyFAI that allows data reduction (azimuthal
integration) for Small Angle Scattering with output axis in q space.

3.11 Integration tool: pyFAI-waxs

3.11.1 Purpose

Azimuthal integration for powder diffraction.

pyFAI-waxs is the script of pyFAI that allows data reduction (azimuthal integration) for Wide Angle Scattering to
produce X-Ray Powder Diffraction Pattern with output axis in 2-theta space.

3.11.2 Usage:

pyFAI-waxs -p param.poni [options] file1.edf file2.edf ...

3.11. Integration tool: pyFAI-waxs 37

pyFAI Documentation, Release 0.11.0

3.11.3 Options:

--version show program’s version number and exit

-h, --help show this help message and exit

-p PONIFILE PyFAI parameter file (.poni) MANDATORY

-n NPT Number of points in radial dimension

-w WAVELENGTH, --wavelength=WAVELENGTH wavelength of the X-Ray
beam in Angstrom

-e ENERGY, --energy=ENERGY energy of the X-Ray beam in keV
(hc=12.398419292keV.A)

-u DUMMY, --dummy=DUMMY dummy value for dead pixels

-U DELTA_DUMMY, --delta_dummy=DELTA_DUMMY delta dummy value

-m MASK, --mask=MASK name of the file containing the mask image

-d DARK, --dark=DARK name of the file containing the dark current

-f FLAT, --flat=FLAT name of the file containing the flat field

-P POLARIZATION_FACTOR, --polarization=POLARIZATION_FACTOR
Polarization factor, from -1 (vertical) to +1 (horizontal), default
is None for no correction, synchrotrons are around 0.95

--error-model=ERROR_MODEL Error model to use. Currently on ‘poisson’ is im-
plemented

--unit=UNIT unit for the radial dimension: can be q_nm^-1, q_A^-1, 2th_deg,
2th_rad or r_mm

--ext=EXT extension of the regrouped filename (.xy)

--multi Average out all frame in a file before integrating

--average AVERAGE Method for averaging out: can be ‘mean’ (default), ‘min’,
‘max’ or ‘median’

--do-2D Perform 2D integration in addition to 1D

pyFAI-waxs is the script of pyFAI that allows data reduction (azimuthal integration) for Wide Angle Scattering to
produce X-Ray Powder Diffraction Pattern with output axis in 2-theta space.

3.11.4 Example:

$ pyFAI-waxs --help
usage: pyFAI-waxs [options] -p ponifile file1.edf file2.edf ...

Azimuthal integration for powder diffraction.

positional arguments:
FILE Files to integrated

optional arguments:
-h, --help show this help message and exit
-v, --version show program’s version number and exit
-p PONIFILE PyFAI parameter file (.poni)
-n NPT Number of points in radial dimension
-w WAVELENGTH, --wavelength WAVELENGTH

wavelength of the X-Ray beam in Angstrom
-e ENERGY, --energy ENERGY

energy of the X-Ray beam in keV (hc=12.398419292keV.A)

38 Chapter 3. pyFAI scripts manual

pyFAI Documentation, Release 0.11.0

-u DUMMY, --dummy DUMMY
dummy value for dead pixels

-U DELTA_DUMMY, --delta_dummy DELTA_DUMMY
delta dummy value

-m MASK, --mask MASK name of the file containing the mask image
-d DARK, --dark DARK name of the file containing the dark current
-f FLAT, --flat FLAT name of the file containing the flat field
-P POLARIZATION_FACTOR, --polarization POLARIZATION_FACTOR

Polarization factor, from -1 (vertical) to +1
(horizontal), default is None for no correction,
synchrotrons are around 0.95

--error-model ERROR_MODEL
Error model to use. Currently on ’poisson’ is
implemented

--unit UNIT unit for the radial dimension: can be q_nm^-1, q_A^-1,
2th_deg, 2th_rad or r_mm

--ext EXT extension of the regrouped filename (.xy)
--multi Average out all frame in a file before integrating
--average AVERAGE Method for averaging out: can be ’mean’ (default),

’min’, ’max’ or ’median
--do-2D Perform 2D integration in addition to 1D

pyFAI-waxs is the script of pyFAI that allows data reduction (azimuthal
integration) for Wide Angle Scattering to produce X-Ray Powder Diffraction
Pattern with output axis in 2-theta space.

3.11. Integration tool: pyFAI-waxs 39

pyFAI Documentation, Release 0.11.0

40 Chapter 3. pyFAI scripts manual

CHAPTER

FOUR

DESIGN OF THE PYTHON FAST
AZIMUTHAL INTEGRATION LIBRARY

Author: Jérôme Kieffer

Date: 18/12/2014

Keywords: Design

Target: Developers interested in using the library

Reference: API documentation

4.1 Design of the Python Fast Azimuthal Integrator

Author: Jérôme Kieffer

Date: 20/03/2015

Keywords: Design

Target: Developers interested in using the library

Reference: API documentation

4.1.1 Abstract

The core part of pyFAI is the AzimuthalIntegator objects, named ai hereafter. This document describes the two
importants methods of the class, how it is related to Detector, Geometry, and integration engines.

One of the core idea is to have a complete representation of the geometry and perform the azimuthal integration
as a single geometrical re-binning which take into account all effects like:

• Detector distortion

• Polar transformation

• assignment to the output space

This document focuses on the core of pyFAI while peripheral code dealing with graphical user interfaces, image
analysis online data analysis integration are not covered.

4.1.2 AzimuthalIntegrator

This class is the core of pyFAI, and it is the only one likely to be used by external developers/users. It is usually
instantiated via a function of the module to load a poni-file:

41

pyFAI Documentation, Release 0.11.0

As one can see, the ai contains the detector geometry (type, pixel size, distortion) as well as the geometry of the
experimental setup. The geometry is given in two equivalent forms: the internal representation of pyFAI (second
line) and the one used by FIT2D.

The ai is responsible for azimuthal integration, either the integration along complete ring, called full-integration,
obtained via ai.integrate1d method. The sector-wise integration is obtained via the ai.integrate2d method. The op-
tions for those two methods are really similar and differ only by the parameters related to the azimuthal dimension
of the averaging for ai.integrate2d.

Azimuthal integration methods

Both integration method take as first argument the image coming from the detector as a numpy array. This is the
only mandatory parameter.

Important parameters are the number of bins in radial and azimuthal dimensions. Other parameters are the pre-
processing information like dark and flat pixel wise correction (as array), the polarization factor and the solid-angle
correction to be applied.

Because multiple radial output space are possible (q, r, 2theta) each with multiple units, if one wants to avoid
interpolation, it is important to export directly the data in the destination space, specifying the unit=”2th_deg” or
“q_nm^-1”

Many more option exists, please refer to the documentation of AzimuthalIntegration integrate_

The AzimuthalIntegration class inherits from the Geometry class and hold references to configured rebinning
engines.

4.1.3 Geometry

The Geometry class contains a reference to the detector (composition) and the logic to calculate the position in
space of the various pixels. All arrays in the class are cached and calculated on demand.

The Geometry class relies on the detector to provide the pixel position in space and subsequently transforms it
in 2theta coordinates, or q, chi, r ... This can either be performed in the class itself or by calling function in the
parallel implemented Cython module _geometry. Those transformation could be GPU-ized in the future.

4.1.4 Detector

PyFAI deals only with area detector, indexed in 2 dimension but can handle pixel located in a 3D space.

The pyFAI.detectors module contains the master Detector class which is capable of describing any detector. About
40 types of detectors, inheriting and specializing the Detector class are provided, offering convienient access to
most commercial detectors. A factory is provided to easily instantiate a detector from its name.

A detector class is responsible for two main tasks:

• provide the coordinate in space of any pixel position (center, corner, ...)

• Handle the mask: some detector feature automatic mask calculation (i.e. module based detectors).

The disortion of the detector is handled here and could be GPU-ized in the future.

4.1.5 Rebinning engines

Once the geometry (radial and azimuthal coordinates) calculated for every pixel on the detector, the image from
the detector is rebinned into the output space. Two types of rebinning engines exists:

Histograms They take each single pixel from the image and transfer it to the destination bin, like histograms do.
This family of algorithms is rather easy to implement and provides good single threaded performances, but
it is hard to parallelize (efficiently) due to the need of atomic operations.

42 Chapter 4. Design of the Python Fast Azimuthal Integration library

pyFAI Documentation, Release 0.11.0

Sparse matrix multiplication By recording where every single ends one can transform the previous histogram
into a large sparse matrix multiplication which is either stored as a Look-Up Table (actually an array of
struct, also called LIL) or more efficiently in the CSR_ format. Those rebinning engines are trivially parallel
and provide the best performances.

4.1.6 Pixel splitting

Three levels of pixel splitting schemes are available within pyFAI:

No splitting The whole intensity is assigned to the center of the pixel and rebinned using a simple histogram

Bounding box pixel splitting The pixel is abstracted by a box surrounding it with, making calculation easier but
blurring a bit the image

Tight pixel splitting The pixel is represented by its actual corner position, offering a very precise positionning in
space.

The main issue with pixel splitting arose from 2D integration and the habdling of pixel laying on the chi-
discontinuity.

4.1.7 References:

:: _integrate: http://pythonhosted.org/pyFAI/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator.integrate1d

:: _CSR: http://en.wikipedia.org/wiki/Sparse_matrix

4.1. Design of the Python Fast Azimuthal Integrator 43

http://pythonhosted.org/pyFAI/api/pyFAI.html#pyFAI.azimuthalIntegrator.AzimuthalIntegrator.integrate1d
http://en.wikipedia.org/wiki/Sparse_matrix

pyFAI Documentation, Release 0.11.0

44 Chapter 4. Design of the Python Fast Azimuthal Integration library

CHAPTER

FIVE

PYFAI API

This chapter describes the programming interface of pyFAI, so what you can expect after having launched ipython
and typed: ..

import pyFAI

The most important class is AzimuthalIntegrator which is an object containing both the geometry (it inherits from
Geometry, another class) and exposes important methods (functions) like integrate1d and integrate2d.

5.1 pyFAI Package

pyFAI.__init__.tests()

5.2 azimuthalIntegrator Module

class pyFAI.azimuthalIntegrator.AzimuthalIntegrator(dist=1, poni1=0, poni2=0,
rot1=0, rot2=0, rot3=0,
pixel1=None, pixel2=None,
splineFile=None, detec-
tor=None, wavelength=None)

Bases: pyFAI.geometry.Geometry

This class is an azimuthal integrator based on P. Boesecke’s geometry and histogram algorithm by Manolo
S. del Rio and V.A Sole

All geometry calculation are done in the Geometry class

main methods are:

>>> tth, I = ai.integrate1d(data, npt, unit="2th_deg")
>>> q, I, sigma = ai.integrate1d(data, npt, unit="q_nm^-1", error_model="poisson")
>>> regrouped = ai.integrate2d(data, npt_rad, npt_azim, unit="q_nm^-1")[0]

DEFAULT_METHOD = ‘splitbbox’

array_from_unit(shape, typ=’center’, unit=2th_deg)
Generate an array of position in different dimentions (R, Q, 2Theta)

Parameters

• shape (ndarray.shape) – shape of the expected array

• typ (str) – “center”, “corner” or “delta”

• unit (pyFAI.units.Enum) – can be Q, TTH, R for now

Returns R, Q or 2Theta array depending on unit

Return type ndarray

45

pyFAI Documentation, Release 0.11.0

create_mask(data, mask=None, dummy=None, delta_dummy=None, mode=’normal’)
Combines various masks into another one.

Parameters

• data (ndarray) – input array of data

• mask (ndarray) – input mask (if none, self.mask is used)

• dummy (float) – value of dead pixels

• delta_dumy – precision of dummy pixels

• mode (str) – can be “normal” or “numpy” (inverted) or “where” applied to the mask

Returns the new mask

Return type ndarray of bool

This method combine two masks (dynamic mask from data & dummy and mask) to generate a new
one with the ‘or’ binary operation. One can adjust the level, with the dummy and the delta_dummy
parameter, when you consider the data values needs to be masked out.

This method can work in two different mode:

•“normal”: False for valid pixels, True for bad pixels

•“numpy”: True for valid pixels, false for others

This method tries to accomodate various types of masks (like valid=0 & masked=-1, ...) and guesses
if an input mask needs to be inverted.

dark_correction(data, dark=None)
Correct for Dark-current effects. If dark is not defined, correct for a dark set by “set_darkfiles”

Parameters

• data – input ndarray with the image

• dark – ndarray with dark noise or None

Returns 2tuple: corrected_data, dark_actually used (or None)

darkcurrent

empty

flat_correction(data, flat=None)
Correct for flat field. If flat is not defined, correct for a flat set by “set_flatfiles”

Parameters

• data – input ndarray with the image

• dark – ndarray with dark noise or None

Returns 2tuple: corrected_data, flat_actually used (or None)

flatfield

get_darkcurrent()

get_empty()

get_flatfield()

integrate1d(data, npt, filename=None, correctSolidAngle=True, variance=None, er-
ror_model=None, radial_range=None, azimuth_range=None, mask=None,
dummy=None, delta_dummy=None, polarization_factor=None, dark=None,
flat=None, method=’lut’, unit=q_nm^-1, safe=True, normalization_factor=None,
block_size=32, profile=False, all=False)

Calculate the azimuthal integrated Saxs curve in q(nm^-1) by default

46 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

Multi algorithm implementation (tries to be bullet proof), suitable for SAXS, WAXS, ... and much
more

Parameters

• data (ndarray) – 2D array from the Detector/CCD camera

• npt (int) – number of points in the output pattern

• filename (str) – output filename in 2/3 column ascii format

• correctSolidAngle (bool) – correct for solid angle of each pixel if True

• variance (ndarray) – array containing the variance of the data. If not available, no
error propagation is done

• error_model (str) – When the variance is unknown, an error model can be given:
“poisson” (variance = I), “azimuthal” (variance = (I-<I>)^2)

• radial_range ((float, float), optional) – The lower and upper range of the radial unit.
If not provided, range is simply (data.min(), data.max()). Values outside the range are
ignored.

• azimuth_range ((float, float), optional) – The lower and upper range of the azimuthal
angle in degree. If not provided, range is simply (data.min(), data.max()). Values
outside the range are ignored.

• mask (ndarray) – array (same size as image) with 1 for masked pixels, and 0 for valid
pixels

• dummy (float) – value for dead/masked pixels

• delta_dummy (float) – precision for dummy value

• polarization_factor (float) – polarization factor between -1 (vertical) and +1 (hori-
zontal). 0 for circular polarization or random, None for no correction

• dark (ndarray) – dark noise image

• flat (ndarray) – flat field image

• method (str) – can be “numpy”, “cython”, “BBox” or “splitpixel”, “lut”, “csr”, “nos-
plit_csr”, “full_csr”, “lut_ocl” and “csr_ocl” if you want to go on GPU. To Specify
the device: “csr_ocl_1,2”

• unit (pyFAI.units.Enum) – Output units, can be “q_nm^-1”, “q_A^-1”, “2th_deg”,
“2th_rad”, “r_mm” for now

• safe (bool) – Do some extra checks to ensure LUT/CSR is still valid. False is faster.

• normalization_factor (float) – Value of a normalization monitor

• block_size – size of the block for OpenCL integration (unused?)

• profile – set to True to enable profiling in OpenCL

• all – if true return a dictionary with many more parameters

Returns q/2th/r bins center positions and regrouped intensity (and error array if variance or
variance model provided), uneless all==True.

Return type 2 or 3-tuple of ndarrays

integrate2d(data, npt_rad, npt_azim=360, filename=None, correctSolidAngle=True, vari-
ance=None, error_model=None, radial_range=None, azimuth_range=None,
mask=None, dummy=None, delta_dummy=None, polarization_factor=None,
dark=None, flat=None, method=’bbox’, unit=q_nm^-1, safe=True, normaliza-
tion_factor=None, all=False)

Calculate the azimuthal regrouped 2d image in q(nm^-1)/chi(deg) by default

Multi algorithm implementation (tries to be bullet proof)

5.2. azimuthalIntegrator Module 47

pyFAI Documentation, Release 0.11.0

Parameters

• data (ndarray) – 2D array from the Detector/CCD camera

• npt_rad (int) – number of points in the radial direction

• npt_azim (int) – number of points in the azimuthal direction

• filename (str) – output image (as edf format)

• correctSolidAngle (bool) – correct for solid angle of each pixel if True

• variance (ndarray) – array containing the variance of the data. If not available, no
error propagation is done

• error_model (str) – When the variance is unknown, an error model can be given:
“poisson” (variance = I), “azimuthal” (variance = (I-<I>)^2)

• radial_range ((float, float), optional) – The lower and upper range of the radial unit.
If not provided, range is simply (data.min(), data.max()). Values outside the range are
ignored.

• azimuth_range ((float, float), optional) – The lower and upper range of the azimuthal
angle in degree. If not provided, range is simply (data.min(), data.max()). Values
outside the range are ignored.

• mask (ndarray) – array (same size as image) with 1 for masked pixels, and 0 for valid
pixels

• dummy (float) – value for dead/masked pixels

• delta_dummy (float) – precision for dummy value

• polarization_factor (float) – polarization factor between -1 (vertical) and +1 (hori-
zontal). 0 for circular polarization or random, None for no correction

• dark (ndarray) – dark noise image

• flat (ndarray) – flat field image

• method (str) – can be “numpy”, “cython”, “BBox” or “splitpixel”, “lut”, “csr;
“lut_ocl” and “csr_ocl” if you want to go on GPU. To Specify the device:
“csr_ocl_1,2”

• unit (pyFAI.units.Enum) – Output units, can be “q_nm^-1”, “q_A^-1”, “2th_deg”,
“2th_rad”, “r_mm” for now

• safe (bool) – Do some extra checks to ensure LUT is still valid. False is faster.

• normalization_factor (float) – Value of a normalization monitor

• all – if true, return many more intermediate results as a dict.

Returns azimuthaly regrouped intensity, q/2theta/r pos. and chi pos.

Return type 3-tuple of ndarrays (2d, 1d, 1d)

makeHeaders(hdr=’#’, dark=None, flat=None, polarization_factor=None, normaliza-
tion_factor=None)

Parameters

• hdr (str) – string used as comment in the header

• dark – save the darks filenames (default: no)

• flat – save the flat filenames (default: no)

• polarization_factor (float) – the polarization factor

Returns the header

Return type str

48 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

reset()
Reset azimuthal integrator in addition to other arrays.

save1D(filename, dim1, I, error=None, dim1_unit=2th_deg, dark=None, flat=None, polariza-
tion_factor=None, normalization_factor=None)

Parameters

• filename (str) – the filename used to save the 1D integration

• dim1 (numpy.ndarray) – the x coordinates of the integrated curve

• I (numpy.mdarray) – The integrated intensity

• error (numpy.ndarray or None) – the error bar for each intensity

• dim1_unit (pyFAI.units.Unit) – the unit of the dim1 array

• dark – save the darks filenames (default: no)

• flat – save the flat filenames (default: no)

• polarization_factor (float) – the polarization factor

• normalization_factor (float) – the monitor value

This method save the result of a 1D integration.

save2D(filename, I, dim1, dim2, error=None, dim1_unit=2th_deg, dark=None, flat=None, polar-
ization_factor=None, normalization_factor=None)

Parameters

• filename (str) – the filename used to save the 2D histogram

• dim1 (numpy.ndarray) – the 1st coordinates of the histogram

• dim1 – the 2nd coordinates of the histogram

• I (numpy.mdarray) – The integrated intensity

• error (numpy.ndarray or None) – the error bar for each intensity

• dim1_unit (pyFAI.units.Unit) – the unit of the dim1 array

• dark – save the darks filenames (default: no)

• flat – save the flat filenames (default: no)

• polarization_factor (float) – the polarization factor

• normalization_factor (float) – the monitor value

This method save the result of a 2D integration.

saxs(*arg, **kw)
decorator that deprecates the use of a function

separate(data, npt_rad=1024, npt_azim=512, unit=‘2th_deg’, percentile=50, mask=None, re-
store_mask=True)

Separate bragg signal from powder/amorphous signal using azimuthal integration, median filering and
projected back before subtraction.

Parameters

• data – input image as numpy array

• npt_rad – number of radial points

• npt_azim – number of azimuthal points

• unit – unit to be used for integration

• percentile – which percentile use for cutting out

• mask – masked out pixels array

5.2. azimuthalIntegrator Module 49

pyFAI Documentation, Release 0.11.0

• restore_mask – masked pixels have the same value as input data provided

Returns bragg, amorphous

set_darkcurrent(dark)

set_darkfiles(files=None, method=’mean’)

Parameters

• files (str or list(str) or None) – file(s) used to compute the dark.

• method (str) – method used to compute the dark, “mean” or “median”

Set the dark current from one or mutliple files, avaraged according to the method provided

set_empty(value)

set_flatfield(flat)

set_flatfiles(files, method=’mean’)

Parameters

• files (str or list(str) or None) – file(s) used to compute the dark.

• method (str) – method used to compute the dark, “mean” or “median”

Set the flat field from one or mutliple files, averaged according to the method provided

setup_CSR(shape, npt, mask=None, pos0_range=None, pos1_range=None,
mask_checksum=None, unit=2th_deg, split=’bbox’)

Prepare a look-up-table

Parameters

• shape ((int, int)) – shape of the dataset

• npt (int or (int, int)) – number of points in the the output pattern

• mask (ndarray) – array with masked pixel (1=masked)

• pos0_range ((float, float)) – range in radial dimension

• pos1_range ((float, float)) – range in azimuthal dimension

• mask_checksum (int (or anything else ...)) – checksum of the mask buffer

• unit (pyFAI.units.Enum) – use to propagate the LUT object for further checkings

• split – Splitting scheme: valid options are “no”, “bbox”, “full”

This method is called when a look-up table needs to be set-up. The shape parameter, correspond to the
shape of the original datatset. It is possible to customize the number of point of the output histogram
with the npt parameter which can be either an integer for an 1D integration or a 2-tuple of integer in
case of a 2D integration. The LUT will have a different shape: (npt, lut_max_size), the later parameter
being calculated during the instanciation of the splitBBoxLUT class.

It is possible to prepare the LUT with a predefine mask. This operation can speedup the computation
of the later integrations. Instead of applying the patch on the dataset, it is taken into account during the
histogram computation. If provided the mask_checksum prevent the re-calculation of the mask. When
the mask changes, its checksum is used to reset (or not) the LUT (which is a very time consuming
operation !)

It is also possible to restrain the range of the 1D or 2D pattern with the pos1_range and pos2_range.

The unit parameter is just propagated to the LUT integrator for further checkings: The aim is to prevent
an integration to be performed in 2th-space when the LUT was setup in q space.

setup_LUT(shape, npt, mask=None, pos0_range=None, pos1_range=None,
mask_checksum=None, unit=2th_deg)

Prepare a look-up-table

50 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

Parameters

• shape ((int, int)) – shape of the dataset

• npt (int or (int, int)) – number of points in the the output pattern

• mask (ndarray) – array with masked pixel (1=masked)

• pos0_range ((float, float)) – range in radial dimension

• pos1_range ((float, float)) – range in azimuthal dimension

• mask_checksum (int (or anything else ...)) – checksum of the mask buffer

• unit (pyFAI.units.Enum) – use to propagate the LUT object for further checkings

This method is called when a look-up table needs to be set-up. The shape parameter, correspond to the
shape of the original datatset. It is possible to customize the number of point of the output histogram
with the npt parameter which can be either an integer for an 1D integration or a 2-tuple of integer in
case of a 2D integration. The LUT will have a different shape: (npt, lut_max_size), the later parameter
being calculated during the instanciation of the splitBBoxLUT class.

It is possible to prepare the LUT with a predefine mask. This operation can speedup the computation
of the later integrations. Instead of applying the patch on the dataset, it is taken into account during the
histogram computation. If provided the mask_checksum prevent the re-calculation of the mask. When
the mask changes, its checksum is used to reset (or not) the LUT (which is a very time consuming
operation !)

It is also possible to restrain the range of the 1D or 2D pattern with the pos1_range and pos2_range.

The unit parameter is just propagated to the LUT integrator for further checkings: The aim is to prevent
an integration to be performed in 2th-space when the LUT was setup in q space.

xrpd(*arg, **kw)
decorator that deprecates the use of a function

xrpd2(*arg, **kw)
decorator that deprecates the use of a function

xrpd2_histogram(*arg, **kw)
decorator that deprecates the use of a function

xrpd2_numpy(*arg, **kw)
decorator that deprecates the use of a function

xrpd2_splitBBox(*arg, **kw)
decorator that deprecates the use of a function

xrpd2_splitPixel(*arg, **kw)
decorator that deprecates the use of a function

xrpd_CSR_OCL(*arg, **kw)
decorator that deprecates the use of a function

xrpd_LUT(*arg, **kw)
decorator that deprecates the use of a function

xrpd_LUT_OCL(*arg, **kw)
decorator that deprecates the use of a function

xrpd_OpenCL(*arg, **kw)
decorator that deprecates the use of a function

xrpd_cython(*arg, **kw)
decorator that deprecates the use of a function

xrpd_numpy(*arg, **kw)
decorator that deprecates the use of a function

5.2. azimuthalIntegrator Module 51

pyFAI Documentation, Release 0.11.0

xrpd_splitBBox(*arg, **kw)
decorator that deprecates the use of a function

xrpd_splitPixel(*arg, **kw)
decorator that deprecates the use of a function

5.3 integrate_widget Module

class pyFAI.integrate_widget.AIWidget(input_data=None, output_path=None,
output_format=None, slow_dim=None,
fast_dim=None)

Bases: PyQt4.QtGui.QWidget

assign_unit()
assign unit to the corresponding widget

detector_changed()

die()

dump(filename=’.azimint.json’)
Dump the status of the current widget to a file in JSON

Parameters filename (str) – path where to save the config

help()

openCL_changed()

platform_changed()

proceed()

restore(filename=’.azimint.json’)
restore from JSON file the status of the current widget

Parameters filename (str) – path where the config was saved

select_darkcurrent()

select_flatfield()

select_maskfile()

select_ponifile()

select_splinefile()

setBackgroundImage(dark=None)
PyMca Plugin specific

Parameters dark – 2D array with the dark-current

setSelectionMask(mask=None)
PyMca Plugin specific

Parameters mask – 2D array with the masked region

setStackDataObject(stack, stack_name=None)

set_ai()

set_input_data(stack, stack_name=None)

set_ponifile(ponifile=None)

set_validators()
Set all validators for text entries

52 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

class pyFAI.integrate_widget.Browser(default_url=’http://google.com’)
Bases: PyQt4.QtGui.QMainWindow

browse()
Make a web browse on a specific url and show the page on the Webview widget.

5.4 geometry Module

class pyFAI.geometry.Geometry(dist=1, poni1=0, poni2=0, rot1=0, rot2=0, rot3=0, pixel1=None,
pixel2=None, splineFile=None, detector=None, wave-
length=None)

Bases: object

This class is an azimuthal integrator based on P. Boesecke’s geometry and histogram algorithm by Manolo
S. del Rio and V.A Sole

Detector is assumed to be corrected from “raster orientation” effect. It is not addressed here but rather in
the Detector object or at read time. Considering there is no tilt:

•Detector fast dimension (dim2) is supposed to be horizontal (dimension X of the image)

•Detector slow dimension (dim1) is supposed to be vertical, upwards (dimension Y of the image)

•The third dimension is chose such as the referential is orthonormal, so dim3 is along incoming X-ray
beam

Axis 1 is along first dimension of detector (when not tilted), this is the slow dimension of the image array
in C or Y x1={1,0,0}

Axis 2 is along second dimension of detector (when not tilted), this is the fast dimension of the image in C
or X x2={0,1,0}

Axis 3 is along the incident X-Ray beam x3={0,0,1}

We define the 3 rotation around axis 1, 2 and 3:

rotM1 = RotationMatrix[rot1,x1] = {{1,0,0},{0,cos[rot1],-sin[rot1]},{0,sin[rot1],cos[rot1]}} rotM2 = Ro-
tationMatrix[rot2,x2] = {{cos[rot2],0,sin[rot2]},{0,1,0},{-sin[rot2],0,cos[rot2]}} rotM3 = RotationMa-
trix[rot3,x3] = {{cos[rot3],-sin[rot3],0},{sin[rot3],cos[rot3],0},{0,0,1}}

Rotations of the detector are applied first Rot around axis 1, then axis 2 and finally around axis 3:

R = rotM3.rotM2.rotM1

R = {{cos[rot2] cos[rot3],cos[rot3] sin[rot1] sin[rot2]-cos[rot1] sin[rot3],cos[rot1] cos[rot3] sin[rot2]+sin[rot1] sin[rot3]},
{cos[rot2] sin[rot3],cos[rot1] cos[rot3]+sin[rot1] sin[rot2] sin[rot3],-cos[rot3] sin[rot1]+cos[rot1]
sin[rot2] sin[rot3]}, {-sin[rot2],cos[rot2] sin[rot1],cos[rot1] cos[rot2]}}

In Python notation:

R.x1 = [cos(rot2)*cos(rot3),cos(rot2)*sin(rot3),-sin(rot2)]

R.x2 = [cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3),cos(rot1)*cos(rot3) +
sin(rot1)*sin(rot2)*sin(rot3), cos(rot2)*sin(rot1)]

R.x3 = [cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3),-(cos(rot3)*sin(rot1)) +
cos(rot1)*sin(rot2)*sin(rot3), cos(rot1)*cos(rot2)]

•Coordinates of the Point of Normal Incidence:

PONI = R.{0,0,L}

PONI = [L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)), L*(-(cos(rot3)*sin(rot1)) +
cos(rot1)*sin(rot2)*sin(rot3)),L*cos(rot1)*cos(rot2)]

•Any pixel on detector plan at coordinate (d1, d2) in meters. Detector is at z=L

P={d1,d2,L}

5.4. geometry Module 53

pyFAI Documentation, Release 0.11.0

R.P = [t1, t2, t3] t1 = R.P.x1 = d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2)
- cos(rot1)*sin(rot3)) + L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)) t2 = R.P.x2
= d1*cos(rot2)*sin(rot3) + d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3)) + L*(-
(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) t3 = R.P.x3 = d2*cos(rot2)*sin(rot1) -
d1*sin(rot2) + L*cos(rot1)*cos(rot2)

•Distance sample (origin) to detector point (d1,d2)

|R.P| = sqrt(pow(Abs(L*cos(rot1)*cos(rot2) + d2*cos(rot2)*sin(rot1) - d1*sin(rot2)),2) +
pow(Abs(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) +
L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))),2) + pow(Abs(d1*cos(rot2)*sin(rot3)
+ L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) + d2*(cos(rot1)*cos(rot3) +
sin(rot1)*sin(rot2)*sin(rot3))),2))

•cos(2theta) is defined as (R.P component along x3) over the distance from origin to data point |R.P|

tth = ArcCos [-(R.P).x3/|R.P|]

tth = Arccos((-(L*cos(rot1)*cos(rot2)) - d2*cos(rot2)*sin(rot1) + d1*sin(rot2))/

sqrt(pow(Abs(L*cos(rot1)*cos(rot2) + d2*cos(rot2)*sin(rot1) - d1*sin(rot2)),2) +

pow(Abs(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) -
cos(rot1)*sin(rot3)) +

L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3))),2) + pow(Abs(d1*cos(rot2)*sin(rot3)
+ L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +

d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3))),2)))

•tan(2theta) is defined as sqrt(t1**2 + t2**2) / t3

tth = ArcTan2 [sqrt(t1**2 + t2**2) , t3]

Getting 2theta from it’s tangeant seems both more precise (around beam stop very far from sample) and
faster by about 25% Currently there is a swich in the method to follow one path or the other.

•Tangeant of angle chi is defined as (R.P component along x1) over (R.P component along x2). Arctan2
should be used in actual calculation

chi = ArcTan[((R.P).x1) / ((R.P).x2)]

chi = ArcTan2(d1*cos(rot2)*cos(rot3) + d2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3)) +

L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)),

d1*cos(rot2)*sin(rot3) + L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) +
d2*(cos(rot1)*cos(rot3) + sin(rot1)*sin(rot2)*sin(rot3)))

calc_pos_zyx(d0=None, d1=None, d2=None, param=None)
Allows you to calculate the position of a set of points in space in the sample re

Parameters

• d0 – altitude on the point compared to the detector (i.e. z)

• d1 – position on the detector along the slow dimention (i.e. y)

• d2 – position on the detector along the fastest dimention (i.e. x)

:return zyx array, so 3D array with dim0=along the beam, dim1=along slowest dimension
dim2=along fastest dimension unless rotations are too large

54 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

calc_transmission(t0, shape=None)
Defines the absorption correction for a phosphor screen or a scintillator from t0, the normal transmis-
sion of the screen.

Icor = Iobs(1-t0)/(1-exp(ln(t0)/cos(incidence))) 1-exp(ln(t0)/cos(incidence)

let t = —————————– 1 - t0

See reference on: J. Appl. Cryst. (2002). 35, 356–359 G. Wu et al. CCD phosphor

Parameters

• t0 – value of the normal transmission (from 0 to 1)

• shape – shape of the array

Returns actual

calcfrom1d(tth, I, shape=None, mask=None, dim1_unit=2th_deg, correctSolidAngle=True)
Computes a 2D image from a 1D integrated profile

Parameters

• tth – 1D array with 2theta in degrees

• I – scattering intensity

Returns 2D image reconstructed

chi(d1, d2, path=’cython’)
Calculate the chi (azimuthal angle) for the centre of a pixel at coordinate d1,d2 which in the lab ref
has coordinate:

X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3))
- L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)) X2 = p1*cos(rot2)*sin(rot3)
- L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) + p2*(cos(rot1)*cos(rot3) +
sin(rot1)*sin(rot2)*sin(rot3)) X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
hence tan(Chi) = X2 / X1

Parameters

• d1 (float or array of them) – pixel coordinate along the 1st dimention (C convention)

• d2 (float or array of them) – pixel coordinate along the 2nd dimention (C convention)

• path – can be “tan” (i.e via numpy) or “cython”

Returns chi, the azimuthal angle in rad

chiArray(shape)
Generate an array of the given shape with chi(i,j) (azimuthal angle) for all elements.

Parameters shape (ndarray.shape) – the shape of the chi array

Returns the chi array

Return type ndarray

chi_corner(d1, d2)
Calculate the chi (azimuthal angle) for the corner of a pixel at coordinate d1,d2 which in the lab ref
has coordinate:

X1 = p1*cos(rot2)*cos(rot3) + p2*(cos(rot3)*sin(rot1)*sin(rot2) - cos(rot1)*sin(rot3))
- L*(cos(rot1)*cos(rot3)*sin(rot2) + sin(rot1)*sin(rot3)) X2 = p1*cos(rot2)*sin(rot3)
- L*(-(cos(rot3)*sin(rot1)) + cos(rot1)*sin(rot2)*sin(rot3)) + p2*(cos(rot1)*cos(rot3) +
sin(rot1)*sin(rot2)*sin(rot3)) X3 = -(L*cos(rot1)*cos(rot2)) + p2*cos(rot2)*sin(rot1) - p1*sin(rot2)
hence tan(Chi) = X2 / X1

Parameters

• d1 (float or array of them) – pixel coordinate along the 1st dimention (C convention)

5.4. geometry Module 55

pyFAI Documentation, Release 0.11.0

• d2 (float or array of them) – pixel coordinate along the 2nd dimention (C convention)

Returns chi, the azimuthal angle in rad

chia
chi array in cache

cornerArray(shape)
Generate a 3D array of the given shape with (i,j) (radial angle 2th, azimuthal angle chi) for all ele-
ments.

Parameters shape (ndarray.shape) – expected shape

Returns 3d array with shape=(*shape,2) the two elements are (radial angle 2th, azimuthal
angle chi)

cornerQArray(shape)
Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.

cornerRArray(shape)
Generate a 3D array of the given shape with (i,j) (azimuthal angle) for all elements.

correct_SA_spline

cosIncidance(d1, d2, path=’cython’)
Calculate the incidence angle (alpha) for current pixels (P). The poni being the point of normal inci-
dence, it’s incidence angle is ${alpha} = 0$ hence $cos({alpha}) = 1$

Parameters

• d1 – 1d or 2d set of points in pixel coord

• d2 – 1d or 2d set of points in pixel coord

Returns cosine of the incidence angle

del_chia()

del_dssa()

del_qa()

del_ttha()

delta2Theta(shape)
Generate a 3D array of the given shape with (i,j) with the max distance between the center and any
corner in 2 theta

Parameters shape – The shape of the detector array: 2-tuple of integer

Returns 2D-array containing the max delta angle between a pixel center and any corner in
2theta-angle (rad)

deltaChi(shape)
Generate a 3D array of the given shape with (i,j) with the max distance between the center and any
corner in chi-angle (rad)

Parameters shape – The shape of the detector array: 2-tuple of integer

Returns 2D-array containing the max delta angle between a pixel center and any corner in
chi-angle (rad)

deltaQ(shape)
Generate a 2D array of the given shape with (i,j) with the max distance between the center and any
corner in q_vector unit (nm^-1)

Parameters shape – The shape of the detector array: 2-tuple of integer

Returns array 2D containing the max delta Q between a pixel center and any corner in
q_vector unit (nm^-1)

56 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

deltaR(shape)
Generate a 2D array of the given shape with (i,j) with the max distance between the center and any
corner in radius unit (mm)

Parameters shape – The shape of the detector array: 2-tuple of integer

Returns array 2D containing the max delta Q between a pixel center and any corner in
q_vector unit (nm^-1)

diffSolidAngle(d1, d2)
Calculate the solid angle of the current pixels (P) versus the PONI (C)

Omega(P) A cos(a) SC^2 3 SC^3

dOmega = ——— = ——— x ——— = cos (a) = —— Omega(C) SP^2 A cos(0) SP^3

cos(a) = SC/SP

Parameters

• d1 – 1d or 2d set of points

• d2 – 1d or 2d set of points (same size&shape as d1)

Returns solid angle correction array

dist

dssa
solid angle array in cache

getFit2D()
Export geometry setup with the geometry of Fit2D

Returns dict with parameters compatible with fit2D geometry

getPyFAI()
Export geometry setup with the geometry of PyFAI

Returns dict with the parameter-set of the PyFAI geometry

getSPD()
get the SPD like parameter set: For geometry description see Peter Boesecke J.Appl.Cryst.(2007).40,
s423–s427

Basically the main difference with pyFAI is the order of the axis which are flipped

Returns dictionnary with those parameters: SampleDistance: distance from sample to de-
tector at the PONI (orthogonal projection) Center_1, pixel position of the PONI along
fastest axis Center_2: pixel position of the PONI along slowest axis Rot_1: rotation
around the fastest axis (x) Rot_2: rotation around the slowest axis (y) Rot_3: rotation
around the axis ORTHOGONAL to the detector plan PSize_1: pixel size in meter along
the fastest dimention PSize_2: pixel size in meter along the slowst dimention splineFile:
name of the file containing the spline BSize_1: pixel binning factor along the fastest di-
mention BSize_2: pixel binning factor along the slowst dimention WaveLength: wave-
length used in meter

get_chia()

get_correct_solid_angle_for_spline()

get_dist()

get_dssa()

get_mask()

get_maskfile()

get_pixel1()

5.4. geometry Module 57

pyFAI Documentation, Release 0.11.0

get_pixel2()

get_poni1()

get_poni2()

get_qa()

get_rot1()

get_rot2()

get_rot3()

get_spline()

get_splineFile()

get_ttha()

get_wavelength()

load(filename)
Load the refined parameters from a file.

Parameters filename (string) – name of the file to load

mask

maskfile

oversampleArray(myarray)

pixel1

pixel2

polarization(shape=None, factor=None, axis_offset=0)
Calculate the polarization correction accoding to the polarization factor:

•If the polarization factor is None, the correction is not applied (returns 1)

•If the polarization factor is 0 (circular polarization), the correction correspond to (1+(cos2θ)^2)/2

•If the polarization factor is 1 (linear horizontal polarization), there is no correction in the vertical
plane and a node at 2th=90, chi=0

•If the polarization factor is -1 (linear vertical polarization), there is no correction in the horizontal
plane and a node at 2th=90, chi=90

•If the polarization is elliptical, the polarization factor varies between -1 and +1.

The axis_offset parameter allows correction for the misalignement of the polarization plane (or ellipse
main axis) and the the detector’s X axis.

Parameters

• factor – (Ih-Iv)/(Ih+Iv): varies between 0 (no polarization) and 1 (where division by
0 could occure at 2th=90, chi=0)

• axis_offset – Angle between the polarization main axis and detector X direction (in
radians !!!)

Returns 2D array with polarization correction array (intensity/polarisation)

poni1

poni2

qArray(shape)
Generate an array of the given shape with q(i,j) for all elements.

qCornerFunct(d1, d2)
Calculate the q_vector for any pixel corner (in nm^-1)

58 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

qFunction(d1, d2, param=None, path=’cython’)
Calculates the q value for the center of a given pixel (or set of pixels) in nm-1

q = 4pi/lambda sin(2theta / 2)

Parameters

• d1 (scalar or array of scalar) – position(s) in pixel in first dimension (c order)

• d2 (scalar or array of scalar) – position(s) in pixel in second dimension (c order)

Returns q in in nm^(-1)

Return type float or array of floats.

qa
Q array in cache

rArray(shape)
Generate an array of the given shape with r(i,j) for all elements; r in m.

Parameters shape – expected shape

Returns 2d array of the given shape with radius in m from beam center on detector.

rCornerFunct(d1, d2)
Calculate the radius array for any pixel corner (in m)

rFunction(d1, d2, param=None, path=’numpy’)
Calculates the radius value for the center of a given pixel (or set of pixels) in m

r = direct_distance * tan(2theta)

Parameters

• d1 (scalar or array of scalar) – position(s) in pixel in first dimension (c order)

• d2 (scalar or array of scalar) – position(s) in pixel in second dimension (c order)

Returns r in in m

Return type float or array of floats.

read(filename)
Load the refined parameters from a file.

Parameters filename (string) – name of the file to load

reset()
reset most arrays that are cached: used when a parameter changes.

rot1

rot2

rot3

save(filename)
Save the geometry parameters.

Parameters filename (string) – name of the file where to save the parameters

setChiDiscAtPi()
Set the position of the discontinuity of the chi axis between -pi and +pi. This is the default behavour

setChiDiscAtZero()
Set the position of the discontinuity of the chi axis between 0 and 2pi. By default it is between pi and
-pi

setFit2D(directDist, centerX, centerY, tilt=0.0, tiltPlanRotation=0.0, pixelX=None, pixelY=None,
splineFile=None)

Set the Fit2D-like parameter set: For geometry description see HPR 1996 (14) pp-240

5.4. geometry Module 59

pyFAI Documentation, Release 0.11.0

Warning: Fit2D flips automatically images depending on their file-format. By reverse engineering we
noticed this behavour for Tiff and Mar345 images (at least). To obtaine correct result you will have to
flip images using numpy.flipud.

Parameters

• direct – direct distance from sample to detector along the incident beam (in millimeter
as in fit2d)

• tilt – tilt in degrees

• tiltPlanRotation – Rotation (in degrees) of the tilt plan arround the Z-detector axis *
0deg -> Y does not move, +X goes to Z<0 * 90deg -> X does not move, +Y goes to
Z<0 * 180deg -> Y does not move, +X goes to Z>0 * 270deg -> X does not move, +Y
goes to Z>0

• pixelX,pixelY – as in fit2d they ar given in micron, not in meter

• centerY (centerX,) – pixel position of the beam center

• splineFile – name of the file containing the spline

setOversampling(iOversampling)
set the oversampling factor

setPyFAI(**kwargs)
set the geometry from a pyFAI-like dict

setSPD(SampleDistance, Center_1, Center_2, Rot_1=0, Rot_2=0, Rot_3=0, PSize_1=None,
PSize_2=None, splineFile=None, BSize_1=1, BSize_2=1, WaveLength=None)

Set the SPD like parameter set: For geometry description see Peter Boesecke J.Appl.Cryst.(2007).40,
s423–s427

Basically the main difference with pyFAI is the order of the axis which are flipped

Parameters SampleDistance – distance from sample to detector at the PONI (orthogonal
projection)

:param Center_1, pixel position of the PONI along fastest axis :param Center_2: pixel position of the
PONI along slowest axis :param Rot_1: rotation around the fastest axis (x) :param Rot_2: rotation
around the slowest axis (y) :param Rot_3: rotation around the axis ORTHOGONAL to the detector
plan :param PSize_1: pixel size in meter along the fastest dimention :param PSize_2: pixel size in
meter along the slowst dimention :param splineFile: name of the file containing the spline :param
BSize_1: pixel binning factor along the fastest dimention :param BSize_2: pixel binning factor along
the slowst dimention :param WaveLength: wavelength used

set_chia(_)

set_correct_solid_angle_for_spline(value)

set_dist(value)

set_dssa(_)

set_mask(mask)

set_maskfile(maskfile)

set_pixel1(pixel1)

set_pixel2(pixel2)

set_poni1(value)

set_poni2(value)

set_qa(_)

set_rot1(value)

set_rot2(value)

60 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

set_rot3(value)

set_spline(spline)

set_splineFile(splineFile)

set_ttha(_)

set_wavelength(value)

classmethod sload(filename)
A static method combining the constructor and the loader from a file

Parameters filename (string) – name of the file to load

Returns instance of Gerometry of AzimuthalIntegrator set-up with the parameter from the
file.

solidAngleArray(shape, order=3, absolute=False)
Generate an array for the solid angle correction given the shape of the detector.

solid_angle = cos(incidence)^3

Parameters

• shape – shape of the array expected

• order – should be 3, power of the formula just obove

• absolute – the absolute solid angle is calculated as:

SA = pix1*pix2/dist^2 * cos(incidence)^3

spline

splineFile

tth(d1, d2, param=None, path=’cython’)
Calculates the 2theta value for the center of a given pixel (or set of pixels)

Parameters

• d1 (scalar or array of scalar) – position(s) in pixel in first dimension (c order)

• d2 (scalar or array of scalar) – position(s) in pixel in second dimension (c order)

• path – can be “cos”, “tan” or “cython”

Returns 2theta in radians

Return type floar or array of floats.

tth_corner(d1, d2)
Calculates the 2theta value for the corner of a given pixel (or set of pixels)

Parameters

• d1 (scalar or array of scalar) – position(s) in pixel in first dimension (c order)

• d2 (scalar or array of scalar) – position(s) in pixel in second dimension (c order)

Returns 2theta in radians

Return type floar or array of floats.

ttha
2theta array in cache

twoThetaArray(shape)
Generate an array of the given shape with two-theta(i,j) for all elements.

wavelength

write(filename)
Save the geometry parameters.

5.4. geometry Module 61

pyFAI Documentation, Release 0.11.0

Parameters filename (string) – name of the file where to save the parameters

5.5 geometryRefinement Module

class pyFAI.geometryRefinement.GeometryRefinement(data, dist=1, poni1=None,
poni2=None, rot1=0, rot2=0,
rot3=0, pixel1=None,
pixel2=None, splineFile=None,
detector=None, wavelength=None,
calibrant=None)

Bases: pyFAI.azimuthalIntegrator.AzimuthalIntegrator

anneal(maxiter=1000000)

calc_2th(rings, wavelength=None)

Parameters

• rings – indices of the rings. starts at 0 and self.dSpacing should be long enough !!!

• wavelength – wavelength in meter

chi2(param=None)

chi2_wavelength(param=None)

confidence(with_rot=True)
Confidence interval obtained from the second derivative of the error function next to its minimum
value.

Note the confidence interval increases with the number of points which is “surprizing”

Parameters with_rot – if true include rot1 & rot2 in the parameter set.

Returns std_dev, confidence

curve_fit(with_rot=True)
Refine the geometry and provide confidence interval Use curve_fit from scipy.optimize to not only
refine the geometry (unconstrained fit)

Parameters with_rot – include rotation intro error measurment

Returns std_dev, confidence

dist_max

dist_min

get_dist_max()

get_dist_min()

get_poni1_max()

get_poni1_min()

get_poni2_max()

get_poni2_min()

get_rot1_max()

get_rot1_min()

get_rot2_max()

get_rot2_min()

get_rot3_max()

get_rot3_min()

62 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

get_wavelength_max()

get_wavelength_min()

guess_poni()
Poni can be guessed by the centroid of the ring with lowest 2Theta

poni1_max

poni1_min

poni2_max

poni2_min

refine1()

refine2(maxiter=1000000, fix=[’wavelength’])

refine2_wavelength(maxiter=1000000, fix=[’wavelength’])

residu1(param, d1, d2, rings)

residu1_wavelength(param, d1, d2, rings)

residu2(param, d1, d2, rings)

residu2_wavelength(param, d1, d2, rings)

residu2_wavelength_weighted(param, d1, d2, rings, weight)

residu2_weighted(param, d1, d2, rings, weight)

roca()
run roca to optimise the parameter set

rot1_max

rot1_min

rot2_max

rot2_min

rot3_max

rot3_min

set_dist_max(value)

set_dist_min(value)

set_poni1_max(value)

set_poni1_min(value)

set_poni2_max(value)

set_poni2_min(value)

set_rot1_max(value)

set_rot1_min(value)

set_rot2_max(value)

set_rot2_min(value)

set_rot3_max(value)

set_rot3_min(value)

set_tolerance(value=10)
Set the tolerance for a refinement of the geometry; in percent of the original value

Parameters value – Tolerance as a percentage

5.5. geometryRefinement Module 63

pyFAI Documentation, Release 0.11.0

set_wavelength_max(value)

set_wavelength_min(value)

simplex(maxiter=1000000)

wavelength_max

wavelength_min

5.6 detectors Module

Module containing the description of all detectors with a factory to instantiate them

class pyFAI.detectors.Aarhus(pixel1=2.5e-05, pixel2=2.5e-05, radius=0.3)
Bases: pyFAI.detectors.Detector

Cylindrical detector made of a bent imaging-plate. Developped at the Danish university of Aarhus r = 1.2m
or 0.3m

The image has to be laid-out horizontally

Nota: the detector is bending towards the sample, hence reducing the sample-detector distance. This is why
z<0 (or p3<0)

TODO: update cython code for 3d detectors use expand2d instead of outer product with ones

IS_FLAT = False

MAX_SHAPE = (1000, 16000)

calc_cartesian_positions(d1=None, d2=None, center=True, use_cython=True)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!! Adapted to Nexus detector definition

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

• center – retrieve the coordinate of the center of the pixel

• use_cython – set to False to test Python implementeation

Returns position in meter of the center of each pixels.

Return type ndarray

d1 and d2 must have the same shape, returned array will have the same shape.

get_pixel_corners(use_cython=True)
Calculate the position of the corner of the pixels

This should be overwritten by class representing non-contiguous detector (Xpad, ...)

Returns 4D array containing: pixel index (slow dimension) pixel index (fast dimension)
corner index (A, B, C or D), triangles or hexagons can be handled the same way vertex
position (z,y,x)

class pyFAI.detectors.Basler(pixel=3.75e-06)
Bases: pyFAI.detectors.Detector

Basler camera are simple CCD camara over GigaE

MAX_SHAPE = (966, 1296)

aliases = [’aca1300’]

force_pixel = True

64 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

class pyFAI.detectors.Detector(pixel1=None, pixel2=None, splineFile=None)
Bases: object

Generic class representing a 2D detector

IS_FLAT = True

aliases = []

binning

calc_cartesian_positions(d1=None, d2=None, center=True, use_cython=True)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!! Adapted to Nexus detector definition

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

• center – retrieve the coordinate of the center of the pixel

• use_cython – set to False to test Python implementation

Returns position in meter of the center of each pixels.

Return type 3xndarray, the later being None if IS_FLAT

d1 and d2 must have the same shape, returned array will have the same shape.

pos_z is None for flat detectors

calc_mask()
Detectors with gaps should overwrite this method with something actually calculating the mask!

classmethod factory(name, config=None)
A kind of factory...

Parameters

• name (str) – name of a detector

• config (dict or JSON representation of it.) – configuration of the detector

Returns an instance of the right detector, set-up if possible

Return type pyFAI.detectors.Detector

force_pixel = False

getFit2D()
Helper method to serialize the description of a detector using the Fit2d units

Returns representation of the detector easy to serialize

Return type dict

getPyFAI()
Helper method to serialize the description of a detector using the pyFAI way with everything in S.I
units.

Returns representation of the detector easy to serialize

Return type dict

get_binning()

get_mask()

get_maskfile()

get_name()
Get a meaningful name for detector

5.6. detectors Module 65

pyFAI Documentation, Release 0.11.0

get_pixel1()

get_pixel2()

get_pixel_corners()
Calculate the position of the corner of the pixels

This should be overwritten by class representing non-contiguous detector (Xpad, ...)

Precision float32 is ok: precision of 1µm for a detector size of 1m

Returns 4D array containing: pixel index (slow dimension) pixel index (fast dimension)
corner index (A, B, C or D), triangles or hexagons can be handled the same way vertex
position (z,y,x)

get_splineFile()

guess_binning(data)
Guess the binning/mode depending on the image shape :param data: 2-tuple with the shape of the
image or the image with a .shape attribute.

mask

maskfile

name
Get a meaningful name for detector

pixel1

pixel2

registry = {‘imxpads70’: <class ‘pyFAI.detectors.ImXPadS70’>, ‘rayonix_mx225’: <class ‘pyFAI.detectors.RayonixMx225’>, ‘eiger1m’: <class ‘pyFAI.detectors.Eiger1M’>, ‘imxpads10’: <class ‘pyFAI.detectors.ImXPadS10’>, ‘mar_345’: <class ‘pyFAI.detectors.Mar345’>, ‘titan’: <class ‘pyFAI.detectors.Titan’>, ‘rayonixlx225’: <class ‘pyFAI.detectors.RayonixLx255’>, ‘pilatus2m’: <class ‘pyFAI.detectors.Pilatus2M’>, ‘agilent_titan’: <class ‘pyFAI.detectors.Titan’>, ‘rayonixmx225hs’: <class ‘pyFAI.detectors.RayonixMx225hs’>, ‘fairchildcondor486:90’: <class ‘pyFAI.detectors.Fairchild’>, ‘rayonix_mx425hs’: <class ‘pyFAI.detectors.RayonixMx425hs’>, ‘rayonix_sx85hs’: <class ‘pyFAI.detectors.RayonixSx85hs’>, ‘rayonixmx170’: <class ‘pyFAI.detectors.RayonixMx170’>, ‘mar165’: <class ‘pyFAI.detectors.RayonixSx165’>, ‘perkinelmer’: <class ‘pyFAI.detectors.Perkin’>, ‘titan2kx2k’: <class ‘pyFAI.detectors.Titan’>, ‘rayonix’: <class ‘pyFAI.detectors.Rayonix’>, ‘xpads540flat’: <class ‘pyFAI.detectors.Xpad_flat’>, ‘mar133’: <class ‘pyFAI.detectors.Rayonix133’>, ‘rayonixmx300hs’: <class ‘pyFAI.detectors.RayonixMx300hs’>, ‘rayonix133’: <class ‘pyFAI.detectors.Rayonix133’>, ‘condor’: <class ‘pyFAI.detectors.Fairchild’>, ‘fairchild_condor_486:90’: <class ‘pyFAI.detectors.Fairchild’>, ‘eiger16m’: <class ‘pyFAI.detectors.Eiger16M’>, ‘rayonix_mx170’: <class ‘pyFAI.detectors.RayonixMx170’>, ‘rayonixsx165’: <class ‘pyFAI.detectors.RayonixSx165’>, ‘xpad_flat’: <class ‘pyFAI.detectors.Xpad_flat’>, ‘agilenttitan’: <class ‘pyFAI.detectors.Titan’>, ‘oxd_titan’: <class ‘pyFAI.detectors.Titan’>, ‘perkin_elmer’: <class ‘pyFAI.detectors.Perkin’>, ‘rayonixlx255’: <class ‘pyFAI.detectors.RayonixLx255’>, ‘dexela_2923’: <class ‘pyFAI.detectors.Dexela2923’>, ‘pilatus6m’: <class ‘pyFAI.detectors.Pilatus6M’>, ‘titan_2k_x_2k’: <class ‘pyFAI.detectors.Titan’>, ‘aca1300’: <class ‘pyFAI.detectors.Basler’>, ‘oxdtitan’: <class ‘pyFAI.detectors.Titan’>, ‘pilatus1m’: <class ‘pyFAI.detectors.Pilatus1M’>, ‘xpad_s540_flat’: <class ‘pyFAI.detectors.Xpad_flat’>, ‘mar3450’: <class ‘pyFAI.detectors.Mar345’>, ‘rayonixlx170’: <class ‘pyFAI.detectors.RayonixLx170’>, ‘basler’: <class ‘pyFAI.detectors.Basler’>, ‘eiger4m’: <class ‘pyFAI.detectors.Eiger4M’>, ‘rayonix_lx170’: <class ‘pyFAI.detectors.RayonixLx170’>, ‘imxpad_s10’: <class ‘pyFAI.detectors.ImXPadS10’>, ‘aarhus’: <class ‘pyFAI.detectors.Aarhus’>, ‘rayonix_sx200’: <class ‘pyFAI.detectors.RayonixSx200’>, ‘rayonixsx85hs’: <class ‘pyFAI.detectors.RayonixSx85hs’>, ‘rayonixmx225’: <class ‘pyFAI.detectors.RayonixMx225’>, ‘pilatus300k’: <class ‘pyFAI.detectors.Pilatus300k’>, ‘rayonix_lx225’: <class ‘pyFAI.detectors.RayonixLx255’>, ‘perkin_detector’: <class ‘pyFAI.detectors.Perkin’>, ‘pilatus200k’: <class ‘pyFAI.detectors.Pilatus200k’>, ‘imxpads140’: <class ‘pyFAI.detectors.ImXPadS140’>, ‘detector’: <class ‘pyFAI.detectors.Detector’>, ‘rayonixmx300’: <class ‘pyFAI.detectors.RayonixMx300’>, ‘rayonix_sx165’: <class ‘pyFAI.detectors.RayonixSx165’>, ‘imxpad_s140’: <class ‘pyFAI.detectors.ImXPadS140’>, ‘pilatus300kw’: <class ‘pyFAI.detectors.Pilatus300kw’>, ‘imxpad_s70’: <class ‘pyFAI.detectors.ImXPadS70’>, ‘fairchild’: <class ‘pyFAI.detectors.Fairchild’>, ‘rayonixsx200’: <class ‘pyFAI.detectors.RayonixSx200’>, ‘rayonix_mx225hs’: <class ‘pyFAI.detectors.RayonixMx225hs’>, ‘rayonix_sx30hs’: <class ‘pyFAI.detectors.RayonixSx30hs’>, ‘rayonix_mx340hs’: <class ‘pyFAI.detectors.RayonixMx340hs’>, ‘eiger9m’: <class ‘pyFAI.detectors.Eiger9M’>, ‘perkin’: <class ‘pyFAI.detectors.Perkin’>, ‘rayonixsx30hs’: <class ‘pyFAI.detectors.RayonixSx30hs’>, ‘rayonixmx340hs’: <class ‘pyFAI.detectors.RayonixMx340hs’>, ‘mar345’: <class ‘pyFAI.detectors.Mar345’>, ‘perkindetector’: <class ‘pyFAI.detectors.Perkin’>, ‘rayonixmx425hs’: <class ‘pyFAI.detectors.RayonixMx425hs’>, ‘rayonixmx325’: <class ‘pyFAI.detectors.RayonixMx325’>, ‘rayonix_mx300’: <class ‘pyFAI.detectors.RayonixMx300’>, ‘pilatus100k’: <class ‘pyFAI.detectors.Pilatus100k’>, ‘rayonix_mx325’: <class ‘pyFAI.detectors.RayonixMx325’>, ‘rayonix_mx300hs’: <class ‘pyFAI.detectors.RayonixMx300hs’>, ‘dexela2923’: <class ‘pyFAI.detectors.Dexela2923’>}

save(filename)
Saves the detector description into a NeXus file, adapted from:
http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html Main differences:

•differentiate pixel center from pixel corner offsets

•store all offsets are ndarray according to slow/fast dimention (not x, y)

Parameters filename – name of the file on the disc

setFit2D(**kwarg)
Twin method of getFit2D: setup a detector instance according to a description

Parameters kwarg – dictionary containing pixel1, pixel2 and splineFile

setPyFAI(**kwarg)
Twin method of getPyFAI: setup a detector instance according to a description

Parameters kwarg – dictionary containing detector, pixel1, pixel2 and splineFile

set_binning(bin_size=(1, 1))
Set the “binning” of the detector,

Parameters bin_size ((int, int)) – binning as integer or tuple of integers.

set_config(config)
Sets the configuration of the detector. This implies: - Orientation: integers - Binning - ROI

The configuration is either a python dictionary or a JSON string or a file containing this JSON config-
uration

keys in that dictionary are : “orientation”: integers from 0 to 7 “binning”: integer or 2-tuple of integers.
If only one integer is provided, “offset”: coordinate (in pixels) of the start of the detector

set_dx(dx=None)
set the pixel-wise displacement along X (dim2):

66 Chapter 5. pyFAI API

http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html

pyFAI Documentation, Release 0.11.0

set_dy(dy=None)
set the pixel-wise displacement along Y (dim1):

set_mask(mask)

set_maskfile(maskfile)

set_pixel1(value)

set_pixel2(value)

set_splineFile(splineFile)

splineFile

uniform_pixel = True

class pyFAI.detectors.DetectorMeta(name, bases, dct)
Bases: type

Metaclass used to register all detector classes inheriting from Detector

class pyFAI.detectors.Dexela2923(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Detector

Dexela CMOS family detector

MAX_SHAPE = (3888, 3072)

aliases = [’Dexela 2923’]

force_pixel = True

class pyFAI.detectors.Eiger(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Detector

Eiger detector: generic description containing mask algorithm

MODULE_GAP = (37, 10)

MODULE_SIZE = (514, 1030)

calc_cartesian_positions(d1=None, d2=None)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!!

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

Returns position in meter of the center of each pixels.

Return type ndarray

d1 and d2 must have the same shape, returned array will have the same shape.

calc_mask()
Returns a generic mask for Pilatus detectors...

force_pixel = True

class pyFAI.detectors.Eiger16M(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Eiger

Eiger 16M detector

MAX_SHAPE = (4371, 4150)

class pyFAI.detectors.Eiger1M(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Eiger

Eiger 1M detector

5.6. detectors Module 67

pyFAI Documentation, Release 0.11.0

MAX_SHAPE = (1065, 1030)

class pyFAI.detectors.Eiger4M(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Eiger

Eiger 4M detector

MAX_SHAPE = (2167, 2070)

class pyFAI.detectors.Eiger9M(pixel1=7.5e-05, pixel2=7.5e-05)
Bases: pyFAI.detectors.Eiger

Eiger 9M detector

MAX_SHAPE = (3269, 3110)

class pyFAI.detectors.FReLoN(splineFile=None)
Bases: pyFAI.detectors.Detector

FReLoN detector: The spline is mandatory to correct for geometric distortion of the taper

TODO: create automatically a mask that removes pixels out of the “valid reagion”

calc_mask()
Returns a generic mask for Frelon detectors... All pixels which (center) turns to be out of the valid
region are by default discarded

class pyFAI.detectors.Fairchild(pixel1=1.5e-05, pixel2=1.5e-05)
Bases: pyFAI.detectors.Detector

Fairchild Condor 486:90 detector

MAX_SHAPE = (4096, 4096)

aliases = [’Fairchild’, ‘Condor’, ‘Fairchild Condor 486:90’]

force_pixel = True

uniform_pixel = True

class pyFAI.detectors.ImXPadS10(pixel1=0.00013, pixel2=0.00013)
Bases: pyFAI.detectors.Detector

ImXPad detector: ImXPad s10 detector with 1x1modules

BORDER_SIZE_RELATIVE = 2.5

MAX_SHAPE = (120, 80)

MODULE_SIZE = (120, 80)

PIXEL_SIZE = (0.00013, 0.00013)

aliases = [’Imxpad S10’]

calc_cartesian_positions(d1=None, d2=None)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!!

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

Returns position in meter of the center of each pixels.

Return type ndarray

d1 and d2 must have the same shape, returned array will have the same shape.

calc_mask()
Calculate the mask

68 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

calc_pixels_edges()
Calculate the position of the pixel edges

force_pixel = True

from_control_points(points, border_relative_size=1.0)
This methods allows the calculation of the pixel corners from a set of control points taked on each
chip, 2 on each of them.

Parameters

• points – list (len 2x the number of chips) with xyz coordinates in mm

• border_relative_size – 2.5 for Si sensor, 1 for CdTe sensor

get_pixel_corners()
Calculate the position of the corner of the pixels

This should be overwritten by class representing non-contiguous detector (Xpad, ...)

Precision float32 is ok: precision of 1µm for a detector size of 1m

Returns 4D array containing: pixel index (slow dimension) pixel index (fast dimension)
corner index (A, B, C or D), triangles or hexagons can be handled the same way vertex
position (z,y,x)

uniform_pixel = False

class pyFAI.detectors.ImXPadS140(pixel1=0.00013, pixel2=0.00013)
Bases: pyFAI.detectors.ImXPadS10

ImXPad detector: ImXPad s140 detector with 2x7modules

BORDER_PIXEL_SIZE_RELATIVE = 2.5

MAX_SHAPE = (240, 560)

MODULE_SIZE = (120, 80)

PIXEL_SIZE = (0.00013, 0.00013)

aliases = [’Imxpad S140’]

force_pixel = True

class pyFAI.detectors.ImXPadS70(pixel1=0.00013, pixel2=0.00013)
Bases: pyFAI.detectors.ImXPadS10

ImXPad detector: ImXPad s70 detector with 1x7modules

BORDER_SIZE_RELATIVE = 2.5

MAX_SHAPE = (120, 560)

MODULE_SIZE = (120, 80)

PIXEL_EDGES = None

PIXEL_SIZE = (0.00013, 0.00013)

aliases = [’Imxpad S70’]

force_pixel = True

class pyFAI.detectors.Mar345(pixel1=0.0001, pixel2=0.0001)
Bases: pyFAI.detectors.Detector

Mar345 Imaging plate detector

In this detector, pixels are always square The valid image size are 2300, 2000, 1600, 1200, 3450, 3000,
2400, 1800

MAX_SHAPE = (3450, 3450)

5.6. detectors Module 69

pyFAI Documentation, Release 0.11.0

VALID_SIZE = {2000: 0.00015, 1600: 0.00015, 3000: 0.0001, 2400: 0.0001, 3450: 0.0001, 1200: 0.00015, 2300: 0.00015, 1800: 0.0001}

aliases = [’MAR 345’, ‘Mar3450’]

calc_mask()

force_pixel = True

guess_binning(data)
Guess the binning/mode depending on the image shape :param data: 2-tuple with the shape of the
image or the image with a .shape attribute.

class pyFAI.detectors.NexusDetector(filename=None)
Bases: pyFAI.detectors.Detector

Class representing a 2D detector loaded from a NeXus file

getFit2D()
Helper method to serialize the description of a detector using the Fit2d units

Returns representation of the detector easy to serialize

Return type dict

getPyFAI()
Helper method to serialize the description of a detector using the pyFAI way with everything in S.I
units.

Returns representation of the detector easy to serialize

Return type dict

load(filename)
Loads the detector description from a NeXus file, adapted from:
http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html

Parameters filename – name of the file on the disk

classmethod sload(filename)
Instantiate the detector description from a NeXus file, adapted from:
http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html

Parameters filename – name of the file on the disk

Returns Detector instance

class pyFAI.detectors.Perkin(pixel1=0.0002, pixel2=0.0002)
Bases: pyFAI.detectors.Detector

Perkin detector

DEFAULT_PIXEL1 = 0.0002

DEFAULT_PIXEL2 = 0.0002

MAX_SHAPE = (4096, 4096)

aliases = [’Perkin detector’, ‘Perkin Elmer’]

force_pixel = True

class pyFAI.detectors.Pilatus(pixel1=0.000172, pixel2=0.000172, x_offset_file=None,
y_offset_file=None)

Bases: pyFAI.detectors.Detector

Pilatus detector: generic description containing mask algorithm

Sub-classed by Pilatus1M, Pilatus2M and Pilatus6M

MODULE_GAP = (17, 7)

MODULE_SIZE = (195, 487)

70 Chapter 5. pyFAI API

http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html
http://download.nexusformat.org/sphinx/classes/base_classes/NXdetector.html

pyFAI Documentation, Release 0.11.0

calc_cartesian_positions(d1=None, d2=None)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!!

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

Returns position in meter of the center of each pixels.

Return type ndarray

d1 and d2 must have the same shape, returned array will have the same shape.

calc_mask()
Returns a generic mask for Pilatus detectors...

force_pixel = True

get_splineFile()

set_splineFile(splineFile=None)
In this case splinefile is a couple filenames

splineFile

class pyFAI.detectors.Pilatus100k(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 100k detector

MAX_SHAPE = (195, 487)

class pyFAI.detectors.Pilatus1M(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 1M detector

MAX_SHAPE = (1043, 981)

class pyFAI.detectors.Pilatus200k(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 200k detector

MAX_SHAPE = (407, 487)

class pyFAI.detectors.Pilatus2M(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 2M detector

MAX_SHAPE = (1679, 1475)

class pyFAI.detectors.Pilatus300k(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 300k detector

MAX_SHAPE = (619, 487)

class pyFAI.detectors.Pilatus300kw(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 300k-wide detector

MAX_SHAPE = (195, 1475)

class pyFAI.detectors.Pilatus6M(pixel1=0.000172, pixel2=0.000172)
Bases: pyFAI.detectors.Pilatus

Pilatus 6M detector

5.6. detectors Module 71

pyFAI Documentation, Release 0.11.0

MAX_SHAPE = (2527, 2463)

class pyFAI.detectors.Rayonix(pixel1=3.2e-05, pixel2=3.2e-05)
Bases: pyFAI.detectors.Detector

BINNED_PIXEL_SIZE = {1: 3.2e-05}

MAX_SHAPE = (4096, 4096)

binning

force_pixel = True

get_binning()

guess_binning(data)
Guess the binning/mode depending on the image shape :param data: 2-tuple with the shape of the
image or the image with a .shape attribute.

set_binning(bin_size=(1, 1))
Set the “binning” of the detector,

Parameters bin_size (int or (int, int)) – set the binning of the detector

class pyFAI.detectors.Rayonix133(pixel1=6.4e-05, pixel2=6.4e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix 133 2D CCD detector detector also known as mar133

Personnal communication from M. Blum

What should be the default binning factor for those cameras ?

Circular detector

BINNED_PIXEL_SIZE = {8: 0.000256, 1: 3.2e-05, 2: 6.4e-05, 4: 0.000128}

MAX_SHAPE = (4096, 4096)

aliases = [’MAR133’]

calc_mask()
Circular mask

force_pixel = True

class pyFAI.detectors.RayonixLx170(pixel1=4.42708e-05, pixel2=4.42708e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix lx170 2d CCD Detector (2x1 CCDs).

Nota: this is the same for lx170hs

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (1920, 3840)

aliases = [’Rayonix lx170’]

force_pixel = True

class pyFAI.detectors.RayonixLx255(pixel1=4.42708e-05, pixel2=4.42708e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix lx255 2d Detector (3x1 CCDs)

Nota: this detector is also called lx255hs

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (1920, 5760)

aliases = [’Rayonix lx225’]

72 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

class pyFAI.detectors.RayonixMx170(pixel1=4.42708e-05, pixel2=4.42708e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx170 2d CCD Detector (2x2 CCDs).

Nota: this is the same for mx170hs

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (3840, 3840)

aliases = [’Rayonix mx170’]

class pyFAI.detectors.RayonixMx225(pixel1=7.3242e-05, pixel2=7.3242e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx225 2D CCD detector detector

Nota: this is the same definition for mx225he Personnal communication from M. Blum

BINNED_PIXEL_SIZE = {8: 0.000292969, 1: 3.6621e-05, 2: 7.3242e-05, 3: 0.000109971, 4: 0.000146484}

MAX_SHAPE = (6144, 6144)

aliases = [’Rayonix mx225’]

force_pixel = True

class pyFAI.detectors.RayonixMx225hs(pixel1=7.8125e-05, pixel2=7.8125e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx225hs 2D CCD detector detector

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 3.90625e-05, 2: 7.8125e-05, 3: 0.0001171875, 4: 0.00015625, 5: 0.0001953125, 6: 0.000234375, 8: 0.0003125, 10: 0.000390625}

MAX_SHAPE = (5760, 5760)

aliases = [’Rayonix mx225hs’]

force_pixel = True

class pyFAI.detectors.RayonixMx300(pixel1=7.3242e-05, pixel2=7.3242e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx300 2D detector (4x4 CCDs)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {8: 0.000292969, 1: 3.6621e-05, 2: 7.3242e-05, 3: 0.000109971, 4: 0.000146484}

MAX_SHAPE = (8192, 8192)

aliases = [’Rayonix mx300’]

force_pixel = True

class pyFAI.detectors.RayonixMx300hs(pixel1=7.8125e-05, pixel2=7.8125e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx300hs 2D detector (4x4 CCDs)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 3.90625e-05, 2: 7.8125e-05, 3: 0.0001171875, 4: 0.00015625, 5: 0.0001953125, 6: 0.000234375, 8: 0.0003125, 10: 0.000390625}

MAX_SHAPE = (7680, 7680)

aliases = [’Rayonix mx300hs’]

force_pixel = True

5.6. detectors Module 73

pyFAI Documentation, Release 0.11.0

class pyFAI.detectors.RayonixMx325(pixel1=7.9346e-05, pixel2=7.9346e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx325 and mx325he 2D detector (4x4 CCD chips)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {8: 0.000317383, 1: 3.9673e-05, 2: 7.9346e-05, 3: 0.000119135, 4: 0.000158691}

MAX_SHAPE = (8192, 8192)

aliases = [’Rayonix mx325’]

class pyFAI.detectors.RayonixMx340hs(pixel1=8.85417e-05, pixel2=8.85417e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx340hs 2D detector (4x4 CCDs)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (7680, 7680)

aliases = [’Rayonix mx340hs’]

force_pixel = True

class pyFAI.detectors.RayonixMx425hs(pixel1=4.42708e-05, pixel2=4.42708e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix mx425hs 2D CCD camera (5x5 CCD chip)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (9600, 9600)

aliases = [’Rayonix mx425hs’]

class pyFAI.detectors.RayonixSx165(pixel1=3.95e-05, pixel2=3.95e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix sx165 2d Detector also known as MAR165.

Circular detector

BINNED_PIXEL_SIZE = {8: 0.000316, 1: 3.95e-05, 2: 7.9e-05, 3: 0.000118616, 4: 0.000158}

MAX_SHAPE = (4096, 4096)

aliases = [’MAR165’, ‘Rayonix Sx165’]

calc_mask()
Circular mask

force_pixel = True

class pyFAI.detectors.RayonixSx200(pixel1=4.8e-05, pixel2=4.8e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix sx200 2d CCD Detector.

Pixel size are personnal communication from M. Blum.

BINNED_PIXEL_SIZE = {8: 0.000384, 1: 4.8e-05, 2: 9.6e-05, 3: 0.000144, 4: 0.000192}

MAX_SHAPE = (4096, 4096)

aliases = [’Rayonix sx200’]

74 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

class pyFAI.detectors.RayonixSx30hs(pixel1=1.5625e-05, pixel2=1.5625e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix sx30hs 2D CCD camera (1 CCD chip)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 1.5625e-05, 2: 3.125e-05, 3: 4.6875e-05, 4: 6.25e-05, 5: 7.8125e-05, 6: 9.375e-05, 8: 0.000125, 10: 0.00015625}

MAX_SHAPE = (1920, 1920)

aliases = [’Rayonix Sx30hs’]

class pyFAI.detectors.RayonixSx85hs(pixel1=4.42708e-05, pixel2=4.42708e-05)
Bases: pyFAI.detectors.Rayonix

Rayonix sx85hs 2D CCD camera (1 CCD chip)

Pixel size from a personnal communication from M. Blum

BINNED_PIXEL_SIZE = {1: 4.42708e-05, 2: 8.85417e-05, 3: 0.0001328125, 4: 0.0001770833, 5: 0.0002213542, 6: 0.000265625, 8: 0.0003541667, 10: 0.0004427083}

MAX_SHAPE = (1920, 1920)

aliases = [’Rayonix Sx85hs’]

class pyFAI.detectors.Titan(pixel1=6e-05, pixel2=6e-05)
Bases: pyFAI.detectors.Detector

Titan CCD detector from Agilent. Mask not handled

MAX_SHAPE = (2048, 2048)

aliases = [’Titan 2k x 2k’, ‘OXD Titan’, ‘Agilent Titan’]

force_pixel = True

uniform_pixel = True

class pyFAI.detectors.Xpad_flat(pixel1=0.00013, pixel2=0.00013)
Bases: pyFAI.detectors.ImXPadS10

Xpad detector: generic description for ImXPad detector with 8x7modules

BORDER_PIXEL_SIZE_RELATIVE = 2.5

MAX_SHAPE = (960, 560)

MODULE_GAP = (0.00357, 0)

MODULE_SIZE = (120, 80)

PIXEL_SIZE = (0.00013, 0.00013)

aliases = [’Xpad S540 flat’]

calc_cartesian_positions(d1=None, d2=None, center=True, use_cython=True)
Calculate the position of each pixel center in cartesian coordinate and in meter of a couple of coordi-
nates. The half pixel offset is taken into account here !!! Adapted to Nexus detector definition

Parameters

• d1 (ndarray (1D or 2D)) – the Y pixel positions (slow dimension)

• d2 (ndarray (1D or 2D)) – the X pixel positions (fast dimension)

• center – retrieve the coordinate of the center of the pixel

@parm use_cython: set to False to test Numpy implementation :return: position in meter of the center
of each pixels. :rtype: ndarray

d1 and d2 must have the same shape, returned array will have the same shape.

5.6. detectors Module 75

pyFAI Documentation, Release 0.11.0

calc_mask()
Returns a generic mask for Xpad detectors... discards the first line and raw form all modules: those
are 2.5x bigger and often mis - behaving

force_pixel = True

get_pixel_corners()
Calculate the position of the corner of the pixels

Returns 4D array containing: pixel index (slow dimension) pixel index (fast dimension)
corner index (A, B, C or D), triangles or hexagons can be handled the same way vertex
position (z,y,x)

uniform_pixel = False

5.7 spline Module

This is piece of software aims at manipulating spline files describing for geometric corrections of the 2D detectors
using cubic-spline.

Mainly used at ESRF with FReLoN CCD camera.

class pyFAI.spline.Spline(filename=None)
Bases: object

This class is a python representation of the spline file

Those file represent cubic splines for 2D detector distortions and makes heavy use of fit-
pack (dierckx in netlib) — A Python-C wrapper to FITPACK (by P. Dierckx). FITPACK
is a collection of FORTRAN programs for curve and surface fitting with splines and tensor
product splines. See _http://www.cs.kuleuven.ac.be/cwis/research/nalag/research/topics/fitpack.html or
_http://www.netlib.org/dierckx/index.html

array2spline(smoothing=1000, timing=False)
Calculates the spline coefficients from the displacements matrix using fitpack.

Parameters

• smoothing (float) – the greater the smoothing, the fewer the number of knots remain-
ing

• timing (bool) – print the profiling of the calculation

bin(binning=None)
Performs the binning of a spline (same camera with different binning)

Parameters binning – binning factor as integer or 2-tuple of integers

Type int or (int, int)

comparison(ref, verbose=False)
Compares the current spline distortion with a reference

Parameters

• ref (Spline instance) – another spline file

• verbose (bool) – print or not pylab plots

Returns True or False depending if the splines are the same or not

Return type bool

correct(pos)

fliplr()
Flip the spline :return: new spline object

76 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

fliplrud()
Flip the spline left-right and up-down :return: new spline object

flipud()
Flip the spline up-down :return: new spline object

getPixelSize()
Return the size of the pixel from as a 2-tuple of floats expressed in meters.

Returns the size of the pixel from a 2D detector

Return type 2-tuple of floats expressed in meter.

read(filename)
read an ascii spline file from file

Parameters filename (str) – file containing the cubic spline distortion file

setPixelSize(pixelSize)
Sets the size of the pixel from a 2-tuple of floats expressed in meters.

Param pixel size in meter

spline2array(timing=False)
Calculates the displacement matrix using fitpack bisplev(x, y, tck, dx = 0, dy = 0)

Parameters timing (bool) – profile the calculation or not

Returns Nothing !

Return type float or ndarray

Evaluate a bivariate B-spline and its derivatives. Return a rank-2 array of spline function values (or
spline derivative values) at points given by the cross-product of the rank-1 arrays x and y. In special
cases, return an array or just a float if either x or y or both are floats.

splineFuncX(x, y, list_of_points=False)
Calculates the displacement matrix using fitpack for the X direction on the given grid.

Parameters

• x (ndarray) – points of the grid in the x direction

• y (ndarray) – points of the grid in the y direction

• list_of_points – if true, consider the zip(x,y) instead of the of the square array

Returns displacement matrix for the X direction

Return type ndarray

splineFuncY(x, y, list_of_points=False)
calculates the displacement matrix using fitpack for the Y direction

Parameters

• x (ndarray) – points in the x direction

• y (ndarray) – points in the y direction

• list_of_points – if true, consider the zip(x,y) instead of the of the square array

Returns displacement matrix for the Y direction

Return type ndarray

tilt(center=(0.0, 0.0), tiltAngle=0.0, tiltPlanRot=0.0, distanceSampleDetector=1.0, tim-
ing=False)

The tilt method apply a virtual tilt on the detector, the point of tilt is given by the center

Parameters

• center (2-tuple of floats) – position of the point of tilt, this point will not be moved.

5.7. spline Module 77

pyFAI Documentation, Release 0.11.0

• tiltAngle (float in the range [-90:+90] degrees) – the value of the tilt in degrees

• tiltPlanRot (Float in the range [-180:180]) – the rotation of the tilt plan with the Ox
axis (0 deg for y axis invariant, 90 deg for x axis invariant)

• distanceSampleDetector (float) – the distance from sample to detector in meter
(along the beam, so distance from sample to center)

Returns tilted Spline instance

Return type Spline

write(filename)
save the cubic spline in an ascii file usable with Fit2D or SPD

Parameters filename (str) – name of the file containing the cubic spline distortion file

writeEDF(basename)
save the distortion matrices into a couple of files called basename-x.edf and basename-y.edf

Parameters basename (str) – base of the name used to save the data

zeros(xmin=0.0, ymin=0.0, xmax=2048.0, ymax=2048.0, pixSize=None)
Defines a spline file with no (zero) displacement.

Parameters

• xmin (float) – minimum coordinate in x, usually zero

• xmax (float) – maximum coordinate in x (+1) usually 2048

• ymin (float) – minimum coordinate in y, usually zero

• ymax (float) – maximum coordinate y (+1) usually 2048

• pixSize (float) – size of the pixel

zeros_like(other)
Defines a spline file with no (zero) displacement with the same shape as the other one given.

Parameters other (Spline instance) – another Spline instance

pyFAI.spline.main()
Some tests

5.8 opencl Module

class pyFAI.opencl.Device(name=’None’, dtype=None, version=None, driver_version=None,
extensions=’‘, memory=None, available=None, cores=None, fre-
quency=None, flop_core=None, idx=0, workgroup=1)

Bases: object

Simple class that contains the structure of an OpenCL device

pretty_print()
Complete device description

Returns string

class pyFAI.opencl.OpenCL
Bases: object

Simple class that wraps the structure ocl_tools_extended.h

This is a static class. ocl should be the only instance and shared among all python modules.

comput_cap = (5, 0)

context_cache = {}

78 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

create_context(devicetype=’ALL’, useFp64=False, platformid=None, deviceid=None,
cached=True)

Choose a device and initiate a context.

Devicetypes can be GPU,gpu,CPU,cpu,DEF,ACC,ALL. Suggested are GPU,CPU. For each setting to
work there must be such an OpenCL device and properly installed. E.g.: If Nvidia driver is installed,
GPU will succeed but CPU will fail. The AMD SDK kit is required for CPU via OpenCL. :param de-
vicetype: string in [”cpu”,”gpu”, “all”, “acc”] :param useFp64: boolean specifying if double precision
will be used :param platformid: integer :param devid: integer :return: OpenCL context on the selected
device

flop_core = 4

get_platform(key)
Return a platform according

Parameters key (int or str) – identifier for a platform, either an Id (int) or it’s name

idd = 0

idx = 2

nb_devices = 4

platforms = [NVIDIA CUDA, AMD Accelerated Parallel Processing, Intel(R) OpenCL]

select_device(dtype=’ALL’, memory=None, extensions=[], best=True, **kwargs)
Select a device based on few parameters (at the end, keep the one with most memory)

Parameters

• type – “gpu” or “cpu” or “all”

• memory – minimum amount of memory (int)

• extensions – list of extensions to be present

• best – shall we look for the

workgroup = 8192

class pyFAI.opencl.Platform(name=’None’, vendor=’None’, version=None, extensions=None,
idx=0)

Bases: object

Simple class that contains the structure of an OpenCL platform

add_device(device)
Add new device to the platform

Parameters device – Device instance

get_device(key)
Return a device according to key

Parameters key (int or str) – identifier for a device, either it’s id (int) or it’s name

pyFAI.opencl.allocate_cl_buffers(buffers, device, context)

Parameters buffers – the buffers info use to create the pyopencl.Buffer

Returns a dict containing the instanciated pyopencl.Buffer

Return type dict(str, pyopencl.Buffer)

This method instanciate the pyopencl.Buffer from the buffers description.

pyFAI.opencl.release_cl_buffers(cl_buffers)

Parameters cl_buffer (dict(str, pyopencl.Buffer)) – the buffer you want to release

This method release the memory of the buffers store in the dict

5.8. opencl Module 79

pyFAI Documentation, Release 0.11.0

5.9 ocl_azim Module

C++ less implementation of Dimitris’ code based on PyOpenCL

TODO and trick from dimitris still missing:

• dark-current subtraction is still missing

• In fact you might want to consider doing the conversion on the GPU when possible. Think about it,
you have a uint16 to float which for large arrays was slow.. You load on the graphic card a uint16 (2x
transfer speed) and you convert to float inside so it should be blazing fast.

class pyFAI.ocl_azim.Integrator1d(filename=None)
Bases: object

Attempt to implements ocl_azim using pyopencl

BLOCK_SIZE = 128

clean(preserve_context=False)
Free OpenCL related resources allocated by the library.

clean() is used to reinitiate the library back in a vanilla state. It may be asked to preserve the context
created by init or completely clean up OpenCL. Guard/Status flags that are set will be reset.

Parameters preserve_context (bool) – preserves or destroys all OpenCL resources

configure(kernel=None)
The method configure() allocates the OpenCL resources required and compiled the OpenCL kernels.
An active context must exist before a call to configure() and getConfiguration() must have been called
at least once. Since the compiled OpenCL kernels carry some information on the integration parame-
ters, a change to any of the parameters of getConfiguration() requires a subsequent call to configure()
for them to take effect.

If a configuration exists and configure() is called, the configuration is cleaned up first to avoid OpenCL
memory leaks

Parameters kernel_path – is the path to the actual kernel

execute(image)
Perform a 1D azimuthal integration

execute() may be called only after an OpenCL device is configured and a Tth array has been loaded
(at least once) It takes the input image and based on the configuration provided earlier it performs the
1D integration. Notice that if the provided image is bigger than N then only N points will be taked
into account, while if the image is smaller than N the result may be catastrophic. set/unset and loadTth
methods have a direct impact on the execute() method. All the rest of the methods will require at least
a new configuration via configure().

Takes an image, integrate and return the histogram and weights

Parameters image – image to be processed as a numpy array

Returns tth_out, histogram, bins

TODO: to improve performances, the image should be casted to float32 in an optimal way: currently
using numpy machinery but would be better if done in OpenCL

getConfiguration(Nimage, Nbins, useFp64=None)
getConfiguration gets the description of the integrations to be performed and keeps an internal copy

Parameters

• Nimage – number of pixel in image

• Nbins – number of bins in regrouped histogram

• useFp64 – use double precision. By default the same as init!

80 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

get_status()
return a dictionnary with the status of the integrator: for compatibilty with former implementation

init(devicetype=’GPU’, useFp64=True, platformid=None, deviceid=None)
Initial configuration: Choose a device and initiate a context. Devicetypes can be GPU, gpu, CPU, cpu,
DEF, ACC, ALL. Suggested are GPU,CPU. For each setting to work there must be such an OpenCL
device and properly installed. E.g.: If Nvidia driver is installed, GPU will succeed but CPU will fail.
The AMD SDK kit (AMD APP) is required for CPU via OpenCL.

Parameters

• devicetype – string in [”cpu”,”gpu”, “all”, “acc”]

• useFp64 – boolean specifying if double precision will be used

• platformid – integer

• devid – integer

loadTth(tth, dtth, tth_min=None, tth_max=None)
Load the 2th arrays along with the min and max value.

loadTth maybe be recalled at any time of the execution in order to update the 2th arrays.

loadTth is required and must be called at least once after a configure()

log(**kwarg)
log in a file all opencl events

setDummyValue(dummy, delta_dummy)
Enables dummy value functionality and uploads the value to the OpenCL device.

Image values that are similar to the dummy value are set to 0.

Parameters

• dummy – value in image of missing values (masked pixels?)

• delta_dummy – precision for dummy values

setMask(mask)
Enables the use of a Mask during integration. The Mask can be updated by recalling setMask at any
point.

The Mask must be a PyFAI Mask. Pixels with 0 are masked out. TODO: check and invert!

Parameters mask – numpy.ndarray of integer.

setRange(lowerBound, upperBound)
Instructs the program to use a user - defined range for 2th values

setRange is optional. By default the integration will use the tth_min and tth_max given by loadTth()
as integration range. When setRange is called it sets a new integration range without affecting the 2th
array. All values outside that range will then be discarded when interpolating. Currently, if the interval
of 2th (2th + -d2th) is not all inside the range specified, it is discarded. The bins of the histogram are
RESCALED to the defined range and not the original tth_max - tth_min range.

setRange can be called at any point and as many times required after a valid configuration is created.

Parameters

• lowerBound (float) – lower bound of the integration range

• upperBound (float) – upper bound of the integration range

setSolidAngle(solidAngle)
Enables SolidAngle correction and uploads the suitable array to the OpenCL device.

By default the program will assume no solidangle correction unless setSolidAngle() is called. From
then on, all integrations will be corrected via the SolidAngle array.

If the SolidAngle array needs to be changes, one may just call setSolidAngle() again with that array

5.9. ocl_azim Module 81

pyFAI Documentation, Release 0.11.0

Parameters solidAngle (ndarray) – the solid angle of the given pixel

unsetDummyValue()
Disable a dummy value. May be re-enabled at any time by setDummyValue

unsetMask()
Disables the use of a Mask from that point. It may be re-enabled at any point via setMask

unsetRange()
Disable the use of a user-defined 2th range and revert to tth_min,tth_max range

unsetRange instructs the program to revert to its default integration range. If the method is called when
no user-defined range had been previously specified, no action will be performed

unsetSolidAngle()
Instructs the program to not perform solidangle correction from now on.

SolidAngle correction may be turned back on at any point

5.10 ocl_azim_lut Module

class pyFAI.ocl_azim_lut.OCL_LUT_Integrator(lut, image_size, devicetype=’all’, plat-
formid=None, deviceid=None, check-
sum=None, profile=False, empty=None)

Bases: object

BLOCK_SIZE = 16

integrate(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidAn-
gle=None, polarization=None, dark_checksum=None, flat_checksum=None, sol-
idAngle_checksum=None, polarization_checksum=None, preprocess_only=False,
safe=True)

Before performing azimuthal integration, the preprocessing is :

data = (data - dark) / (flat*solidAngle*polarization)

Integration is performed using the CSR representation of the look-up table

Parameters

• dark – array of same shape as data for pre-processing

• flat – array of same shape as data for pre-processing

• solidAngle – array of same shape as data for pre-processing

• polarization – array of same shape as data for pre-processing

• dark_checksum – CRC32 checksum of the given array

• flat_checksum – CRC32 checksum of the given array

• solidAngle_checksum – CRC32 checksum of the given array

• polarization_checksum – CRC32 checksum of the given array

• safe – if True (default) compares arrays on GPU according to their checksum, unless,
use the buffer location is used

• preprocess_only – return the dark subtracted; flat field & solidAngle & polarization
corrected image, else

:return averaged data, weighted histogram, unweighted histogram

log_profile()
If we are in profiling mode, prints out all timing for every single OpenCL call

82 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

5.11 ocl_azim_csr Module

class pyFAI.ocl_azim_csr.OCL_CSR_Integrator(lut, image_size, devicetype=’all’,
block_size=32, platformid=None, devi-
ceid=None, checksum=None, profile=False,
empty=None)

Bases: object

integrate(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidAn-
gle=None, polarization=None, dark_checksum=None, flat_checksum=None, sol-
idAngle_checksum=None, polarization_checksum=None, preprocess_only=False,
safe=True)

Before performing azimuthal integration, the preprocessing is :

data = (data - dark) / (flat*solidAngle*polarization)

Integration is performed using the CSR representation of the look-up table

Parameters

• dark – array of same shape as data for pre-processing

• flat – array of same shape as data for pre-processing

• solidAngle – array of same shape as data for pre-processing

• polarization – array of same shape as data for pre-processing

• dark_checksum – CRC32 checksum of the given array

• flat_checksum – CRC32 checksum of the given array

• solidAngle_checksum – CRC32 checksum of the given array

• polarization_checksum – CRC32 checksum of the given array

• safe – if True (default) compares arrays on GPU according to their checksum, unless,
use the buffer location is used

• preprocess_only – return the dark subtracted; flat field & solidAngle & polarization
corrected image, else

:return averaged data, weighted histogram, unweighted histogram

log_profile()
If we are in profiling mode, prints out all timing for every single OpenCL call

5.12 ocl_azim_csr_dis Module

class pyFAI.ocl_azim_csr_dis.OCL_CSR_Integrator(lut, image_size, devicetype=’all’,
block_size=32, platformid=None,
deviceid=None, checksum=None,
profile=False, empty=None)

Bases: object

integrate(data, dummy=None, delta_dummy=None, dark=None, flat=None, solidAn-
gle=None, polarization=None, dark_checksum=None, flat_checksum=None, sol-
idAngle_checksum=None, polarization_checksum=None)

log_profile()
If we are in profiling mode, prints out all timing for every single OpenCL call

5.11. ocl_azim_csr Module 83

pyFAI Documentation, Release 0.11.0

5.13 worker Module

This module contains the Worker class:

A tool able to perform azimuthal integration with: additional saving capabilities like - save as 2/3D structure in a
HDF5 File - read from HDF5 files

Aims at being integrated into a plugin like LImA or as model for the GUI

The configuration of this class is mainly done via a dictionary transmitted as a JSON string: Here are the valid
keys:

“dist”, “poni1”, “poni2”, “rot1” “rot3” “rot2” “pixel1” “pixel2”

“splineFile” “wavelength”

“poni” #path of the file

“chi_discontinuity_at_0” “do_mask” “do_dark” “do_azimuthal_range” “do_flat” “do_2D” “az-
imuth_range_min” “azimuth_range_max”

“polarization_factor” “nbpt_rad” “do_solid_angle” “do_radial_range” “do_poisson” “delta_dummy”
“nbpt_azim” “flat_field” “radial_range_min” “dark_current” “do_polarization” “mask_file” “detec-
tor” “unit” “radial_range_max” “val_dummy” “do_dummy” “method”

}

class pyFAI.worker.DistortionWorker(detector=None, dark=None, flat=None, soli-
dangle=None, polarization=None, mask=None,
dummy=None, delta_dummy=None, device=None)

Bases: object

Simple worker doing dark, flat, solid angle and polarization correction

process(data, normalization=None)
Process the data and apply a normalization factor :param data: input data :param normalization: nor-
malization factor :return processed data

class pyFAI.worker.PixelwiseWorker(dark=None, flat=None, solidangle=None, po-
larization=None, mask=None, dummy=None,
delta_dummy=None, device=None)

Bases: object

Simple worker doing dark, flat, solid angle and polarization correction

process(data, normalization=None)
Process the data and apply a normalization factor :param data: input data :param normalization: nor-
malization factor :return processed data

class pyFAI.worker.Worker(azimuthalIntgrator=None, shapeIn=(2048, 2048), shapeOut=(360,
500), unit=’r_mm’, dummy=None, delta_dummy=None)

Bases: object

do_2D()

get_config()
return configuration as a dictionary

get_json_config()
return configuration as a JSON string

get_normalization_factor()

get_unit()

normalization_factor

process(data)
Process a frame #TODO: dark, flat, sa are missing

84 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

Param data: numpy array containing the input image

reconfig(shape=(2048, 2048), sync=False)
This is just to force the integrator to initialize with a given input image shape

Parameters

• shape – shape of the input image

• sync – return only when synchronized

reset()
this is just to force the integrator to initialize

save_config(filename=None)

setDarkcurrentFile(imagefile)

setExtension(ext)
enforce the extension of the processed data file written

setFlatfieldFile(imagefile)

setJsonConfig(jsonconfig)

setSubdir(path)
Set the relative or absolute path for processed data

set_normalization_factor(value)

set_unit(value)

unit

warmup(sync=False)
Process a dummy image to ensure everything is initialized

Parameters sync – wait for processing to be finished

5.14 io Module

Module for “high-performance” writing in either 1D with Ascii , or 2D with FabIO or even nD with n varying
from 2 to 4 using HDF5

Stand-alone module which tries to offer interface to HDF5 via H5Py and capabilities to write EDF or other formats
using fabio.

Can be imported without h5py but then limited to fabio & ascii formats.

TODO: * add monitor to HDF5

class pyFAI.io.AsciiWriter(filename=None, prefix=’fai_’, extension=’.dat’)
Bases: pyFAI.io.Writer

Ascii file writer (.xy or .dat)

init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s)

write(data, index=0)

class pyFAI.io.FabioWriter(filename=None)
Bases: pyFAI.io.Writer

Image file writer based on FabIO

TODO !!!

init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s)

5.14. io Module 85

pyFAI Documentation, Release 0.11.0

write(data, index=0)

class pyFAI.io.HDF5Writer(filename, hpath=’data’, fast_scan_width=None)
Bases: pyFAI.io.Writer

Class allowing to write HDF5 Files.

CONFIG = ‘pyFAI’

DATASET_NAME = ‘data’

close()

flush(radial=None, azimuthal=None)
Update some data like axis units and so on.

Parameters

• radial – position in radial direction

• azimuthal – position in azimuthal direction

init(fai_cfg=None, lima_cfg=None)
Initializes the HDF5 file for writing :param fai_cfg: the configuration of the worker as a dictionary

write(data, index=0)
Minimalistic method to limit the overhead. :param data: array with intensities or tuple (2th,I) or
(I,2th,chi)

class pyFAI.io.Nexus(filename, mode=’r’)
Bases: object

Writer class to handle Nexus/HDF5 data Manages: entry

pyFAI-subentry detector

#TODO: make it thread-safe !!!

close()
close the filename and update all entries

deep_copy(name, obj, where=’/’, toplevel=None, excluded=None, overwrite=False)
perform a deep copy: create a “name” entry in self containing a copy of the object

Parameters

• where – path to the toplevel object (i.e. root)

• toplevel – firectly the top level Group

• excluded – list of keys to be excluded

• overwrite – replace content if already existing

find_detector(all=False)
Tries to find a detector within a NeXus file, takes the first compatible detector

Parameters all – return all detectors found as a list

get_class(grp, class_type=’NXcollection’)
return all sub-groups of the given type within a group

Parameters

• grp – HDF5 group

• class_type – name of the NeXus class

get_data(grp, class_type=’NXdata’)
return all dataset of the the NeXus class NXdata

Parameters

• grp – HDF5 group

86 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

• class_type – name of the NeXus class

get_entries()
retrieves all entry sorted the latest first.

Returns list of HDF5 groups

get_entry(name)
Retrieves an entry from its name

Parameters name – name of the entry to retrieve

Returns HDF5 group of NXclass == NXentry

new_class(grp, name, class_type=’NXcollection’)
create a new sub-group with type class_type :param grp: parent group :param name: name of the
sub-group :param class_type: NeXus class name :return: subgroup created

new_detector(name=’detector’, entry=’entry’, subentry=’pyFAI’)
Create a new entry/pyFAI/Detector

Parameters

• detector – name of the detector

• entry – name of the entry

• subentry – all pyFAI description of detectors should be in a pyFAI sub-entry

new_entry(entry=’entry’, program_name=’pyFAI’, title=’description of experiment’,
force_time=None)

Create a new entry

Parameters

• entry – name of the entry

• program_name – value of the field as string

• title – value of the field as string

@force_time: enforce the start_time (as string!) :return: the corresponding HDF5 group

new_instrument(entry=’entry’, instrument_name=’id00’)
Create an instrument in an entry or create both the entry and the instrument if

class pyFAI.io.Writer(filename=None, extension=None)
Bases: object

Abstract class for writers.

CONFIG_ITEMS = [’filename’, ‘dirname’, ‘extension’, ‘subdir’, ‘hpath’]

flush(*arg, **kwarg)
To be implemented

init(fai_cfg=None, lima_cfg=None)
Creates the directory that will host the output file(s) :param fai_cfg: configuration for worker :param
lima_cfg: configuration for acquisition

setJsonConfig(json_config=None)
Sets the JSON configuration

write(data)
To be implemented

pyFAI.io.from_isotime(text, use_tz=False)

Parameters text – string representing the time is iso format

pyFAI.io.get_isotime(forceTime=None)

Parameters forceTime (float) – enforce a given time (current by default)

5.14. io Module 87

pyFAI Documentation, Release 0.11.0

Returns the current time as an ISO8601 string

Return type string

pyFAI.io.is_hdf5(filename)
Check if a file is actually a HDF5 file

Parameters filename – this file has better to exist

5.15 calibration Module

pyFAI-calib

A tool for determining the geometry of a detector using a reference sample.

class pyFAI.calibration.AbstractCalibration(dataFiles=None, darkFiles=None, flat-
Files=None, pixelSize=None, spline-
File=None, detector=None, wave-
length=None, calibrant=None)

Bases: object

Everything that is common to Calibration and Recalibration

HELP = {‘reset’: ‘Reset the geometry to the initial guess (rotation to zero, distance to 0.1m, poni at the center of the image)’, ‘delete’: ‘delete a group of points, provide the letter.’, ‘set’: “set the value of a parameter to the given value, i.e ‘set wavelength 1e-10”’, ‘chiplot’: ‘plot control point radial error as function of azimuthal angle, optional parameters: the rings for which this need to be plotted’, ‘help’: “Try to get the help of a given action, like ‘refine?’. Use done when finished. Most command are composed of ‘action parameter value’ like ‘set wavelength 1e-10’.”, ‘weight’: ‘toggle from weighted to unweighted mode...’, ‘get’: ‘print he value of a parameter’, ‘fix’: “fixes the value of a parameter so that its value will not be optimized, i.e. ‘fix wavelength”’, ‘validate2’: ‘measures the offset of the center as function of azimuthal angle by cross-correlation of 2 plots, 180 deg appart. Option: number of azimuthal sliced, default: 36’, ‘show’: ‘Just print out the current parameter set’, ‘bound’: “sets the upper and lower bound of a parameter: ‘bound dist 0.1 0.2”’, ‘free’: “frees the parameter so that the value can be optimized, i.e. ‘free wavelength”’, ‘bounds’: ‘sets the upper and lower bound of all parameters’, ‘abort’: ‘quit immediately, discarding any unsaved changes’, ‘done’: ‘finishes the processing, performs an integration and quits’, ‘refine’: ‘performs a new cycle of refinement’, ‘integrate’: ‘perform the azimuthal integration and display results’, ‘validate’: ‘plot the offset between the calibrated image and the back-projected image’, ‘recalib’: ‘extract a new set of rings and re-perform the calibration. One can specify how many rings to extract and the algorithm to use (blob, massif, watershed) and the nb_pts_per_deg in azimuth’, ‘assign’: ‘Change the assignment of a group of points to a rings’, ‘define’: ‘Re-define the value for a constant internal parameter of the program like max_iter, nPt_1D, nPt_2D_azim, nPt_2D_rad, integrator_method, error_model. Warning: attribute change may be harmful !’}

PARAMETERS = [’dist’, ‘poni1’, ‘poni2’, ‘rot1’, ‘rot2’, ‘rot3’, ‘wavelength’]

PTS_PER_DEG = 0.3

UNITS = {‘poni1’: ‘meter’, ‘poni2’: ‘meter’, ‘rot1’: ‘radian’, ‘rot3’: ‘radian’, ‘rot2’: ‘radian’, ‘wavelength’: ‘meter’, ‘dist’: ‘meter’}

VALID_URL = [’‘, ‘file’, ‘hdf5’, ‘nxs’, ‘h5’]

analyse_options(options=None, args=None)
Analyse options and arguments

Returns option,arguments

chiplot(rings=None)
plot delta_2theta/2theta = f(chi) and fit the curve.

Parameters rings – list of rings to consider

configure_parser(version=’calibration from pyFAI version 0.11.0: 22/07/2015’,
usage=’pyFAI-calib [options] input_image.edf’, description=None,
epilog=None)

Common configuration for parsers

extract_cpt(method=’massif’, pts_per_deg=1.0)
Performs an automatic keypoint extraction: Can be used in recalib or in calib after a first calibration
has been performed.

Parameters

• method – method for keypoint extraction

• pts_per_deg – number of control points per azimuthal degree (increase for better
precision)

get_pixelSize(ans)
convert a comma separated sting into pixel size

postProcess()
Common part: shows the result of the azimuthal integration in 1D and 2D

preprocess()
Common part: do dark, flat correction thresholding, ... and read missing data from keyboard if needed

88 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

prompt()
prompt for commands to guide the calibration process

Returns True when the user is happy with what he has, False to request another refinement

read_dSpacingFile(verbose=True)
Read the name of the calibrant / file with d-spacing

read_pixelsSize()
Read the pixel size from prompt if not available

read_wavelength()
Read the wavelength

refine()
Contains the common geometry refinement part

reset_geometry(how=’center’, refine=False)
Reset the geometry: no tilt in all cases

Parameters how – multiple options * center: set the PONI at the center of the detector *
ring: center the poni at the middle of the inner-most ring //* best: try both option and
keeps the best

//:param refine: launch the refinement

set_data(data)
call-back function for the peak-picker

validate_calibration()
Validate the calibration and calculate the offset in the diffraction image

validate_center(slices=36)
Validate the position of the center by cross-correlating two spectra 180 deg appart. Output values are
in micron.

Designed for orthogonal setup with centered beam...

Parameters slices – number of slices on which perform

win_error = ‘We are under windows with a 32 bit version of python, matplotlib is not able to display too many images without crashing, this is why the window showing the diffraction image is closed’

class pyFAI.calibration.Calibration(dataFiles=None, darkFiles=None, flatFiles=None, pix-
elSize=None, splineFile=None, detector=None, gaus-
sianWidth=None, wavelength=None, calibrant=None)

Bases: pyFAI.calibration.AbstractCalibration

class doing the calibration of frames

gui_peakPicker()

initgeoRef()
Tries to initialise the GeometryRefinement (dist, poni, rot) Returns a dictionary of key value pairs

parse()
parse options from command line

preprocess()
do dark, flat correction thresholding, ...

refine()
Contains the geometry refinement part specific to Calibration Sets up the initial guess when starting
pyFAI-calib

class pyFAI.calibration.CheckCalib(poni=None, img=None, unit=‘2th_deg’)
Bases: object

get_1dsize()

integrate()

5.15. calibration Module 89

pyFAI Documentation, Release 0.11.0

parse()

rebuild()
Rebuild the diffraction image and measures the offset with the reference :return: offset

show()
Show the image with the the errors

size1d

smooth_mask(hwhm=5)
smooth out around the mask to avoid aligning on the mask

class pyFAI.calibration.MultiCalib(dataFiles=None, darkFiles=None, flatFiles=None, pixel-
Size=None, splineFile=None, detector=None)

Bases: object

get_pixelSize(ans)
convert a comma separated sting into pixel size

parse()
parse options from command line

process()

read_dSpacingFile()
Read the name of the calibrant or the file with d-spacing

read_pixelsSize()
Read the pixel size from prompt if not available

read_wavelength()
Read the wavelength

regression()

class pyFAI.calibration.Recalibration(dataFiles=None, darkFiles=None, flatFiles=None,
pixelSize=None, splineFile=None, detector=None,
wavelength=None, calibrant=None)

Bases: pyFAI.calibration.AbstractCalibration

class doing the re-calibration of frames

parse()
parse options from command line

preprocess()
do dark, flat correction thresholding, ...

read_dSpacingFile()
Read the name of the file with d-spacing

refine()
Contains the geometry refinement part specific to Recalibration

pyFAI.calibration.calib(img, calibrant, detector, basename=’from_ipython’, recon-
struct=False, dist=0.1, gaussian=None, interactive=True)

Procedural interfact for calibration

Parameters

• img – 2d array representing the calibration image

• calibrant – Instance of Calibrant, set-up with wavelength

• detector – Detector instance containing the mask

• basename – output file base

• recontruct – perform image reconstruction of masked pixel ?

• dist – initial distance

90 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

• gaussian – width of the gaussian used for difference of gaussian in the “massif” peak-
picking algorithm

• interactive – set to False for testing

Returns AzimuthalIntegrator instance

pyFAI.calibration.get_detector(detector, datafiles=None)
Detector factory taking into account the binning knowing the datafiles :param detector: string or detector
or other junk :param datafiles: can be a list of images to be opened and their shape used. :return py-
FAI.detector.Detector instance

5.16 peak_picker Module

class pyFAI.peak_picker.ControlPoints(filename=None, calibrant=None, wave-
length=None)

Bases: object

This class contains a set of control points with (optionally) their ring number hence d-spacing and diffraction
2Theta angle ...

append(points, ring=None, annotate=None, plot=None)

Parameters

• point – list of points

• ring – ring number

• annotate – matplotlib.annotate reference

• plot – matplotlib.plot reference

Returns PointGroup instance

append_2theta_deg(points, angle=None, ring=None)

Parameters

• point – list of points

• angle – 2-theta angle in degrees

check()
check internal consistency of the class

dSpacing

get(ring=None)
retireves the last set of points for a given ring (by default the last)

Parameters ring – index of ring to search for

getList()
Retrieve the list of control points suitable for geometry refinement with ring number

getList2theta()
Retrieve the list of control points suitable for geometry refinement

getListRing()
Retrieve the list of control points suitable for geometry refinement with ring number

getWeightedList(image)
Retrieve the list of control points suitable for geometry refinement with ring number and intensities
:param image: :return: a (x,4) array with pos0, pos1, ring nr and intensity

#TODO: refine the value of the intensity using 2nd order polynomia

get_dSpacing()

5.16. peak_picker Module 91

pyFAI Documentation, Release 0.11.0

get_wavelength()

load(filename)
load all control points from a file

pop(ring=None, lbl=None)
Remove the set of points, either from its code or from a given ring (by default the last)

Parameters

• ring – index of ring of which remove the last group

• lbl – code of the ring to remove

readRingNrFromKeyboard()
Ask the ring number values for the given points

reset()
remove all stored values and resets them to default

save(filename)
Save a set of control points to a file :param filename: name of the file :return: None

setWavelength_change2th(value=None)

setWavelength_changeDs(value=None)
This is probably not a good idea, but who knows !

set_dSpacing(lst)

set_wavelength(value=None)

wavelength

class pyFAI.peak_picker.PeakPicker(data, reconst=False, mask=None, pointfile=None, cali-
brant=None, wavelength=None, method=’massif’)

Bases: object

This class is in charge of peak picking, i.e. find bragg spots in the image Two methods can be used : massif
or blob

VALID_METHODS = [’massif’, ‘blob’, ‘watershed’]

closeGUI()

contour(data, cmap=’autumn’, linewidths=2, linestyles=’dashed’)
Overlay a contour-plot

Parameters data – 2darray with the 2theta values in radians...

display_points(minIndex=0, reset=False)
display all points and their ring annotations :param minIndex: ring index to start with :param reset:
remove all point before re-displaying them

finish(filename=None, callback=None)
Ask the ring number for the given points

Parameters filename – file with the point coordinates saved

gui(log=False, maximize=False, pick=True)

Parameters log – show z in log scale

help = [’Please select rings on the diffraction image. In parenthesis, some modified shortcuts for single button mouse (Apple):’, ‘ * Right-click (click+n): try an auto find for a ring’, ‘ * Right-click + Ctrl (click+b): create new group with one point’, ‘ * Right-click + Shift (click+v): add one point to current group’, ‘ * Right-click + m (click+m): find more points for current group’, ‘ * Center-click or (click+d): erase current group’, ‘ * Center-click + 1 or (click+1): erase closest point from current group’]

init(method, sync=True)
Unified initializer

load(filename)
load a filename and plot data on the screen (if GUI)

92 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

massif_contour(data)
Overlays a mask over a diffraction image

Parameters data – mask to be overlaid

on_minus_pts_clicked(*args)
callback function

on_option_clicked(*args)
callback function

on_plus_pts_clicked(*args)
callback function

on_refine_clicked(*args)
callback function

onclick(event)
Called when a mouse is clicked

peaks_from_area(**kwargs)
Return the list of peaks within an area

Parameters

• mask – 2d array with mask.

• Imin – minimum of intensity above the background to keep the point

• keep – maximum number of points to keep

• method – enforce the use of detection using “massif” or “blob” or “watershed”

• ring – ring number to which assign the points

• dmin – minimum distance between two peaks (in pixels)

• seed – good starting points.

Returns list of peaks [y,x], [y,x], ...]

remove_grp(lbl)
remove a group of points

Parameters lbl – label of the group of points

reset()
Reset control point and graph (if needed)

sync_init()

class pyFAI.peak_picker.PointGroup(points=None, ring=None, annotate=None, plot=None,
force_label=None)

Bases: object

Class contains a group of points ... They all belong to the same Debye-Scherrer ring

code
Numerical value for the label: mainly for sorting

classmethod get_label()
return the next label

get_ring()

label

last_label = 0

classmethod reset_label()
reset intenal counter

ring

5.16. peak_picker Module 93

pyFAI Documentation, Release 0.11.0

classmethod set_label(label)
update the internal counter if needed

set_ring(value)

5.17 massif Module

class pyFAI.massif.Massif(data=None)
Bases: object

A massif is defined as an area around a peak, it is used to find neighbouring peaks

calculate_massif(x)
defines a map of the massif around x and returns the mask

delValleySize()

find_peaks(x, nmax=200, annotate=None, massif_contour=None, stdout=<open file ‘<stdout>’,
mode ‘w’ at 0x7f81837b31e0>)

All in one function that finds a maximum from the given seed (x) then calculates the region extension
and extract position of the neighboring peaks. :param x: seed for the calculation, input coordinates
:param nmax: maximum number of peak per region :param annotate: call back method taking number
of points + coordinate as input. :param massif_contour: callback to show the contour of a massif with
the given index. :param stdout: this is the file where output is written by default. :return: list of peaks

getBinnedData()
:return binned data

getBluredData()

Returns a blurred image

getLabeledMassif(pattern=None)

Returns an image composed of int with a different value for each massif

getMedianData()

Returns a spacial median filtered image

getValleySize()

initValleySize()

nearest_peak(x)

Parameters x – coordinates of the peak

:returns the coordinates of the nearest peak

peaks_from_area(mask, Imin=None, keep=1000, dmin=0.0, seed=None, **kwarg)
Return the list of peaks within an area

Parameters

• mask – 2d array with mask.

• Imin – minimum of intensity above the background to keep the point

• keep – maximum number of points to keep

• kwarg – ignored parameters

• dmin – minimum distance to another peak

• seed – list of good guesses to start with

Returns list of peaks [y,x], [y,x], ...]

setValleySize(size)

94 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

valley_size
Defines the minimum distance between two massifs

5.18 blob_detection Module

class pyFAI.blob_detection.BlobDetection(img, cur_sigma=0.25, init_sigma=0.5,
dest_sigma=1, scale_per_octave=2,
mask=None)

Bases: object

Performs a blob detection: http://en.wikipedia.org/wiki/Blob_detection using a Difference of Gaussian +
Pyramid of Gaussians

direction()
Perform and plot the two main directions of the peaks, considering their previously calculated scale
,by calculating the Hessian at different sizes as the combination of gaussians and their first and second
derivatives

nearest_peak(p, refine=True, Imin=None)
Return the nearest peak from a position

Parameters

• p – input position (y,x) 2-tuple of float

• refine – shall the position be refined on the raw data

• Imin – minimum of intensity above the background

peaks_from_area(mask, keep=None, refine=True, Imin=None, dmin=0.0, **kwargs)
Return the list of peaks within an area

Parameters

• mask – 2d array with mask.

• refine – shall the position be refined on the raw data

• Imin – minimum of intensity above the background

• kwarg – ignored parameters

Returns list of peaks [y,x], [y,x], ...]

process(max_octave=None)
Perform the keypoint extraction for max_octave cycles or until all octaves have been processed. :param
max_octave: number of octave to process

refine_Hessian(kpx, kpy, kps)
Refine the keypoint location based on a 3 point derivative, and delete uncoherent keypoints

Parameters

• kpx – x_pos of keypoint

• kpy – y_pos of keypoint

• kps – s_pos of keypoint

:return arrays of corrected coordinates of keypoints, values and locations of keypoints

refine_Hessian_SG(kpx, kpy, kps)
Savitzky Golay algorithm to check if a point is really the maximum :param kpx: x_pos of keypoint
:param kpy: y_pos of keypoint :param kps: s_pos of keypoint :return array of corrected keypoints

refinement()

show_neighboor()

5.18. blob_detection Module 95

http://en.wikipedia.org/wiki/Blob_detection

pyFAI Documentation, Release 0.11.0

show_stats()
Shows a window with the repartition of keypoint in function of scale/intensity

tresh = 0.6

pyFAI.blob_detection.image_test()

pyFAI.blob_detection.local_max(dogs, mask=None, n_5=True)

Parameters dogs – 3d array with (sigma,y,x) containing difference of gaussians

@parm mask: mask out keypoint next to the mask (or inside the mask) :param n_5: look for a larger
neighborhood

pyFAI.blob_detection.make_gaussian(im, sigma, xc, yc)

5.19 calibrant Module

Calibrant

A module containing classical calibrant and also tools to generate d-spacing.

Interesting formula: http://geoweb3.princeton.edu/research/MineralPhy/xtalgeometry.pdf

class pyFAI.calibrant.Calibrant(filename=None, dSpacing=None, wavelength=None)
Bases: object

A calibrant is a reference compound where the d-spacing (interplanar distances) are known. They are
expressed in Angstrom (in the file)

append_2th(value)

append_dSpacing(value)

dSpacing

fake_calibration_image(ai, shape=None, Imax=1.0, U=0, V=0, W=0.0001)
Generates a fake calibration image from an azimuthal integrator

Parameters

• ai – azimuthal integrator

• Imax – maximum intensity of rings

• V, W (U,) – width of the peak from Caglioti’s law (FWHM^2 = Utan(th)^2 + Vtan(th)
+ W)

get_2th()

get_2th_index(angle)
return the index in the 2theta angle index

get_dSpacing()

get_wavelength()

load_file(filename=None)

save_dSpacing(filename=None)
save the d-spacing to a file

setWavelength_change2th(value=None)

setWavelength_changeDs(value=None)
This is probably not a good idea, but who knows !

set_dSpacing(lst)

set_wavelength(value=None)

96 Chapter 5. pyFAI API

http://geoweb3.princeton.edu/research/MineralPhy/xtalgeometry.pdf

pyFAI Documentation, Release 0.11.0

wavelength

class pyFAI.calibrant.Cell(a=1, b=1, c=1, alpha=90, beta=90, gamma=90, lattice=’triclinic’,
lattice_type=’P’)

Bases: object

This is a cell object, able to calculate the volume and d-spacing according to formula from:

http://geoweb3.princeton.edu/research/MineralPhy/xtalgeometry.pdf

classmethod cubic(a)
Factory for cubic lattices :param a: unit cell length

d(hkl)
Calculate the actual d-spacing for a 3-tuple of

d_spacing(dmin=1.0)

Parameters dmin – minimum value of

Returns dict d-spacing as string, list of tuple with Miller indices preceded with the numeri-
cal value

classmethod hexagonal(a, c)
Factory for hexagonal lattices :param a: unit cell length :param c: unit cell length

lattices = [’cubic’, ‘tetragonal’, ‘hexagonal’, ‘rhombohedral’, ‘orthorhombic’, ‘monoclinic’, ‘triclinic’]

classmethod monoclinic(a, b, c, beta)
Factory for hexagonal lattices :param a: unit cell length :param b: unit cell length :param c: unit cell
length :param beta: unit cell angle

classmethod orthorhombic(a, b, c)
Factory for tetragonal lattices :param a: unit cell length :param b: unit cell length :param c: unit cell
length

classmethod rhombohedral(a, alpha)
Factory for hexagonal lattices :param a: unit cell length :param alpha: unit cell angle

save(name, long_name=None, doi=None, dmin=1.0, dest_dir=None)
Save informations about the cell in a d-spacing file, usable as Calibrant

Parameters

• name – name of the calibrant

• doi – reference of the publication used to parametrize the cell

• dmin – minimal d-spacing

• dest_dir – name of the directory where to save the result

classmethod tetragonal(a, c)
Factory for tetragonal lattices :param a: unit cell length :param c: unit cell length

types = {‘I’: ‘Body centered’, ‘P’: ‘Primitive’, ‘C’: ‘Side centered’, ‘R’: ‘Rhombohedral’, ‘F’: ‘Face centered’}

volume

class pyFAI.calibrant.calibrant_factory(basedir=None)
Bases: object

Behaves like a dict but is actually a factory: Each time one retrieves an object it is a new geniune new
calibrant (unmodified)

get(what, notfound=None)

has_key(k)

items()

keys()

5.19. calibrant Module 97

http://geoweb3.princeton.edu/research/MineralPhy/xtalgeometry.pdf

pyFAI Documentation, Release 0.11.0

values()

5.20 distortion Module

class pyFAI.distortion.Distortion(detector=’detector’, shape=None, method=’LUT’, de-
vice=None, workgroup=8)

Bases: object

This class applies a distortion correction on an image.

New version compatible both with CSR and LUT...

calc_LUT(*arg, **kw)

calc_init()
initialize all arrays

calc_pos(*arg, **kw)

calc_size(*arg, **kw)
Considering the “half-CCD” spline from ID11 which describes a (1025,2048) detector, the physical
location of pixels should go from: [-17.48634 : 1027.0543, -22.768829 : 2028.3689] We chose to
discard pixels falling outside the [0:1025,0:2048] range with a lose of intensity

correct(image)
Correct an image based on the look-up table calculated ...

Parameters image – 2D-array with the image

Returns corrected 2D image

reset(method=None, device=None, workgroup=None)
reset the distortion correction and re-calculate the look-up table

Parameters

• method – can be “lut” or “csr”, “lut” looks faster

• device – can be None, “cpu” or “gpu” or the id as a 2-tuple of integer

• worgroup – enforce the workgroup size for CSR.

uncorrect(image)
Take an image which has been corrected and transform it into it’s raw (with loss of information)

Parameters image – 2D-array with the image

Returns uncorrected 2D image and a mask (pixels in raw image

class pyFAI.distortion.Quad(buffer)
Bases: object

xxxxxA
xxxxxxxI’xxxxxxxx x

xxxxxxxxIxxxxxx | x

Bxxxxxxxxxxxx | | x x | | x x | | x

x | | x x | | x x | | x x | | x x | | x

x | | x x | | x x | | x x O| P A’ x

—————–J——————+——————————–L———————– x | x x | x x | x

x | xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxD CxxxxxxxxxxxxxxxxxKxxxxx

98 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

calc_area()

calc_area_AB(I1, I2)

calc_area_BC(J1, J2)

calc_area_CD(K1, K2)

calc_area_DA(L1, L2)

calc_area_old()

calc_area_vectorial()

get_box(i, j)

get_box_size0()

get_box_size1()

get_idx(i, j)

get_offset0()

get_offset1()

init_slope()

integrateAB(start, stop, calc_area)

populate_box()

reinit(A0, A1, B0, B1, C0, C1, D0, D1)

pyFAI.distortion.test()

5.21 units Module

class pyFAI.units.Enum
Bases: dict

Simple class half way between a dict and a class, behaving as an enum

pyFAI.units.to_unit(obj)

5.22 utils Module

Utilities, mainly for image treatment

class pyFAI.utils.FixedParameters
Bases: set

Like a set, made for FixedParameters in geometry refinement

add_or_discard(key, value=True)
Add a value to a set if value, else discard it :param key: element to added or discared from set :type
value: boolean. If None do nothing ! :return: None

pyFAI.utils.averageDark(lstimg, center_method=’mean’, cutoff=None, quantiles=(0.5, 0.5))
Averages a serie of dark (or flat) images. Centers the result on the mean or the median ... but averages all
frames within cutoff*std

5.21. units Module 99

pyFAI Documentation, Release 0.11.0

Parameters

• lstimg – list of 2D images or a 3D stack

• center_method – is the center calculated by a “mean” or a “median”, or “quantile”

• cutoff – keep all data where (I-center)/std < cutoff

• quantiles – 2-tuple of floats average out data between the two quantiles

Returns 2D image averaged

pyFAI.utils.averageImages(listImages, output=None, threshold=0.1, minimum=None, max-
imum=None, darks=None, flats=None, filter_=’mean’, cor-
rect_flat_from_dark=False, cutoff=None, quantiles=None, ffor-
mat=’edf’)

Takes a list of filenames and create an average frame discarding all saturated pixels.

Parameters

• listImages – list of string representing the filenames

• output – name of the optional output file

• threshold – what is the upper limit? all pixel > max*(1-threshold) are discareded.

• minimum – minimum valid value or True

• maximum – maximum valid value

• darks – list of dark current images for subtraction

• flats – list of flat field images for division

• filter – can be “min”, “max”, “median”, “mean”, “sum”, “quantiles” (de-
fault=’mean’)

• correct_flat_from_dark – shall the flat be re-corrected ?

• cutoff – keep all data where (I-center)/std < cutoff

• quantiles – 2-tuple containing the lower and upper quantile (0<q<1) to average out.

• fformat – file format of the output image, default: edf

Returns filename with the data or the data ndarray in case format=None

pyFAI.utils.binning(input_img, binsize, norm=True)

Parameters

• input_img – input ndarray

• binsize – int or 2-tuple representing the size of the binning

• norm – if False, do average instead of sum

Returns binned input ndarray

pyFAI.utils.boundingBox(img)
Tries to guess the bounding box around a valid massif

Parameters img – 2D array like

Returns 4-typle (d0_min, d1_min, d0_max, d1_max)

pyFAI.utils.calc_checksum(ary, safe=True)
Calculate the checksum by default (or returns its buffer location if unsafe)

pyFAI.utils.center_of_mass(img)
Calculate the center of mass of of the array. Like scipy.ndimage.measurements.center_of_mass :param img:
2-D array :return: 2-tuple of float with the center of mass

pyFAI.utils.concatenate_cl_kernel(filenames)

100 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

Parameters filenames – filenames containing the kernels

this method concatenates all the kernel from the list

pyFAI.utils.convert_CamelCase(name)
convert a function name in CamelCase into camel_case

pyFAI.utils.deg2rad(dd)
Convert degrees to radian in the range -pi->pi

Parameters dd – angle in degrees

Nota: depending on the platform it could be 0<2pi A branch is cheaper than a trigo operation

pyFAI.utils.deprecated(func)

pyFAI.utils.dog(s1, s2, shape=None)
2D difference of gaussian typically 1 to 10 parameters

pyFAI.utils.dog_filter(input_img, sigma1, sigma2, mode=’reflect’, cval=0.0)
2-dimensional Difference of Gaussian filter implemented with FFTw

Parameters

• input_img (array-like) – input_img array to filter

• sigma (scalar or sequence of scalars) – standard deviation for Gaussian kernel. The
standard deviations of the Gaussian filter are given for each axis as a sequence, or as
a single number, in which case it is equal for all axes.

• mode – {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional The mode param-
eter determines how the array borders are handled, where cval is the value when
mode is equal to ‘constant’. Default is ‘reflect’

• cval – scalar, optional Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

pyFAI.utils.expand(input_img, sigma, mode=’constant’, cval=0.0)
Expand array a with its reflection on boundaries

Parameters

• a – 2D array

• sigma – float or 2-tuple of floats.

:param mode:”constant”, “nearest”, “reflect” or mirror :param cval: filling value used for constant, 0.0 by
default

Nota: sigma is the half-width of the kernel. For gaussian convolution it is adviced that it is
4*sigma_of_gaussian

pyFAI.utils.expand2d(vect, size2, vertical=True)
This expands a vector to a 2d-array.

The resul is the same as if vertical:

numpy.outer(numpy.ones(size2), vect)

else: numpy.outer(vect, numpy.ones(size2))

This is a ninja optimization: replace *1 with a memcopy, saves 50% of time at the ms level.

Parameters

• vect – 1d vector

• size2 – size

• vertical – if False,

5.22. utils Module 101

pyFAI Documentation, Release 0.11.0

pyFAI.utils.expand_args(args)
Takes an argv and expand it (under Windows, cmd does not convert *.tif into a list of files. Keeps only valid
files (thanks to glob)

Parameters args – list of files or wilcards

Returns list of actual args

pyFAI.utils.float_(val)
Convert anything to a float ... or None if not applicable

pyFAI.utils.gaussian(M, std)
Return a Gaussian window of length M with standard-deviation std.

This differs from the scipy.signal.gaussian implementation as: - The default for sym=False (needed for
gaussian filtering without shift) - This implementation is normalized

Parameters

• M – length of the windows (int)

• std – standatd deviation sigma

The FWHM is 2*numpy.sqrt(2 * numpy.pi)*std

pyFAI.utils.gaussian_filter(input_img, sigma, mode=’reflect’, cval=0.0)
2-dimensional Gaussian filter implemented with FFTw

Parameters

• input_img (array-like) – input array to filter

• sigma (scalar or sequence of scalars) – standard deviation for Gaussian kernel. The
standard deviations of the Gaussian filter are given for each axis as a sequence, or as
a single number, in which case it is equal for all axes.

• mode – {‘reflect’,’constant’,’nearest’,’mirror’, ‘wrap’}, optional The mode param-
eter determines how the array borders are handled, where cval is the value when
mode is equal to ‘constant’. Default is ‘reflect’

• cval – scalar, optional Value to fill past edges of input if mode is ‘constant’. Default
is 0.0

pyFAI.utils.get_calibration_dir()
get the full path of a calibration directory

Returns the full path of the calibrant file

pyFAI.utils.get_cl_file(filename)
get the full path of a openCL file

Returns the full path of the openCL source file

pyFAI.utils.get_ui_file(filename)
get the full path of a user-interface file

Returns the full path of the ui

pyFAI.utils.int_(val)
Convert anything to an int ... or None if not applicable

pyFAI.utils.is_far_from_group(pt, lst_pts, d2)
Tells if a point is far from a group of points, distance greater than d2 (distance squared)

Parameters

• pt – point of interest

• lst_pts – list of points

• d2 – minimum distance squarred

102 Chapter 5. pyFAI API

pyFAI Documentation, Release 0.11.0

Returns True If the point is far from all others.

pyFAI.utils.lazy_property
meant to be used for lazy evaluation of an object attribute. property should represent non-mutable data, as
it replaces itself.

pyFAI.utils.maximum_position(img)
Same as scipy.ndimage.measurements.maximum_position: Find the position of the maximum of the values
of the array.

Parameters img – 2-D image

Returns 2-tuple of int with the position of the maximum

pyFAI.utils.measure_offset(img1, img2, method=’numpy’, withLog=False, withCorr=False)
Measure the actual offset between 2 images :param img1: ndarray, first image :param img2: ndarray, second
image, same shape as img1 :param withLog: shall we return logs as well ? boolean :return: tuple of floats
with the offsets

pyFAI.utils.readFloatFromKeyboard(text, dictVar)
Read float from the keyboard

Parameters

• text – string to be displayed

• dictVar – dict of this type: {1: [set_dist_min],3: [set_dist_min, set_dist_guess,
set_dist_max]}

pyFAI.utils.read_cl_file(filename)

Parameters filename – read an OpenCL file and apply a preprocessor

Returns preprocessed source code

pyFAI.utils.relabel(label, data, blured, max_size=None)
Relabel limits the number of region in the label array. They are ranked relatively to their max(I0)-
max(blur(I0)

Parameters

• label – a label array coming out of scipy.ndimage.measurement.label

• data – an array containing the raw data

• blured – an array containing the blured data

• max_size – the max number of label wanted

:return array like label

pyFAI.utils.removeSaturatedPixel(ds, threshold=0.1, minimum=None, maximum=None)

Parameters

• ds – a dataset as ndarray

• threshold – what is the upper limit? all pixel > max*(1-threshold) are discareded.

• minimum – minumum valid value (or True for auto-guess)

• maximum – maximum valid value

Returns another dataset

pyFAI.utils.roundfft(N)
This function returns the integer >=N for which size the Fourier analysis is faster (fron the FFT point of
view) Credit: Alessandro Mirone, ESRF, 2012

Parameters N – interger on which one would like to do a Fourier transform

Returns integer with a better choice

5.22. utils Module 103

pyFAI Documentation, Release 0.11.0

pyFAI.utils.shift(input_img, shift_val)
Shift an array like scipy.ndimage.interpolation.shift(input_img, shift_val, mode=”wrap”, order=0) but faster
:param input_img: 2d numpy array :param shift_val: 2-tuple of integers :return: shifted image

pyFAI.utils.shiftFFT(input_img, shift_val, method=’fftw’)
Do shift using FFTs Shift an array like scipy.ndimage.interpolation.shift(input, shift, mode=”wrap”, or-
der=”infinity”) but faster :param input_img: 2d numpy array :param shift_val: 2-tuple of float :return:
shifted image

pyFAI.utils.str_(val)
Convert anything to a string ... but None -> “”

pyFAI.utils.timeit(func)

pyFAI.utils.unBinning(binnedArray, binsize, norm=True)

Parameters

• binnedArray – input ndarray

• binsize – 2-tuple representing the size of the binning

• norm – if True (default) decrease the intensity by binning factor. If False, it is non-
conservative

Returns unBinned input ndarray

5.23 gui_utils Module

gui_utils

Module to handle matplotlib and the Qt backend

class pyFAI.gui_utils.Event(width, height)
Bases: object

Dummy class for dummy things

pyFAI.gui_utils.maximize_fig(fig=None)
Try to set the figure fullscreen

pyFAI.gui_utils.update_fig(fig=None)
Update a matplotlib figure with a Qt4 backend

Parameters fig – pylab figure

104 Chapter 5. pyFAI API

CHAPTER

SIX

INSTALLATION OF PYTHON FAST
AZIMUTHAL INTEGRATION LIBRARY

Author: Jérôme Kieffer

Date: 20/03/2015

Keywords: Installation procedure

Target: System administrators

Reference:

6.1 Abstract

Installation procedure

6.2 Hardware requirement

PyFAI has been tested on various hardware: i386, x86_64, PPC64le, ARM. The main constrain may be the
memory requirement: 2GB of memory is a minimal requirement to run the tests. The program may run with
less but “MemoryError” are expected (appearing sometimes as segmentation faults). As a consequence, a 64-bits
operating system is strongly advised.

6.3 Dependencies

PyFAI is a Python library which relies on the scientific stack (numpy, scipy, matplotlib)

• Python: version 2.6, 2.7 and 3.2, 3.3 and 3.4

• NumPy: version 1.4 or newer

• SciPy: version 0.7 or newer

• Matplotlib: verson 0.99 or newer

• FabIO: version 0.08 or newer

There are plenty of optional dependencies which will not prevent pyFAI from working by may impair perfor-
mances or prevent tools from properly working:

• h5py (to access HDF5 files)

• pyopencl (for GPU computing)

• fftw (for image analysis)

105

pyFAI Documentation, Release 0.11.0

• pymca (for mask drawing)

• PyQt4 or PySide (for the graphical user interface)

6.4 Build dependencies:

In addition to the run dependencies, pyFAI needs a C compiler.

C files are generated from cython_ source and distributed. Cython is only needed for developing new binary
modules. If you want to generate your own C files, make sure your local Cython version supports memory-views
(available from Cython v0.17 and newer).

6.5 Building procedure

python setup.py build install

There are few specific options to setup.py:

• –no-cython: do not use cython (even if present) and use the C source code provided by the development
team

• –no-openmp: if you compiler lacks OpenMP support (MacOSX)

• –with-testimages: build the source distribution including all test images. Download 200MB of test images
to create a self consistent tar-ball.

Author: Jérôme Kieffer

Date: 29/01/2015

Keywords: Installation procedure on Linux

Target: System administrators

6.5.1 Installation procedure on Linux

Installation procedure on Debian/Ubuntu

PyFAI has been designed and originally developed on Ubuntu 10.04 and debian6. Now it is included into debian7,
8 and any recent Ubuntu distribution. To install it, simply use the package provided by the distribution.

:: sudo apt-get install pyfai

To build a more recent version, pyFAI provides you a small scripts which builds a debian package and installs it.
It relies on stdeb:

::

sudo apt-get install python-stdeb cython python-fabio ./build-deb.sh

If you are interested in programming in Python3, use

:: sudo apt-get install cython3 python3-fabio ./build-deb.sh 3

Installation procedure on other linux distibution

:: python setup.py build build_doc sudo python setup.py install

106 Chapter 6. Installation of Python Fast Azimuthal Integration library

pyFAI Documentation, Release 0.11.0

Author: Jérôme Kieffer

Date: 29/01/2015

Keywords: Installation procedure on MacOSX

Target: System administrators

6.5.2 Installation procedure on MacOSX

Using PIP

To install pyFAI on an Apple computer you will need a scientific Python stack. MacOSX provides by default
Python2.7 with Numpy which is a good basis.

:: sudo pip install matplotlib –upgrade sudo pip install scipy –upgrade sudo pip install fabio –upgrade sudo pip
install pyFAI –upgrade

If you get an error about the local “UTF-8”, try to:

:: export LC_ALL=C

Before the installation

Installation from sources

Get the sources from Github:

:: git clone https://github.com/pyFAI/pyFAI.git cd pyFAI

To build pyFAI from sources, a compiler is needed. Apple provides Xcode for free:
https://developer.apple.com/xcode/

Another option is to use GCC which provides supports for multiprocessing via OpenMP (see below)

Optional build dependencies: Cython (>v0.17) is needed to translate the source files into C code. If Cython is
present on your system, the source code will be re-generated and compiled.

:: sudo pip install cython –upgrade

About OpenMP

There is an issue with MacOSX (v10.8 onwards) where the default compiler (Xcode 5 or 6) switched from gcc 4.2
to clang and dropped the support for OpenMP. This is why OpenMP is by default deactivated under MacOSX. If
you have installed an OpenMP-able compiler like GCC, you can re-activate it using the flag –openmp for setup.py

:: LC_ALL=C python setup.py build –openmp sudo LC_ALL=C python setup.py install

Author: Jérôme Kieffer

Date: 21/04/2015

Keywords: Installation procedure

Target: System administrators

6.5.3 Installation procedure on Windows

PyFAI is a Python library. Even if you are only interested in some tool like pyFAI-calib or pyFAI-integrate, you
need to install the complete library (for now). This is usually performed in 3 steps: install Python, the scientific
python stack and finally the pyFAI itself.

6.5. Building procedure 107

https://github.com/pyFAI/pyFAI.git
https://developer.apple.com/xcode/

pyFAI Documentation, Release 0.11.0

Get Python

Unlike on Unix computers, Python is not available by default on Windows computers. We recommend you to
install the 64 bit version of Python from http://python.org, preferably the latest version from the 2.7 series. Any
version between 2.6, 2.7, 3.2, 3.3 or 3.4 should be OK but 2.7 is the most tested.

The 64bits version is strongly advised if your hardware and operating system supports it, as the 32 bits versions
is limited to 2GB of memory, hence unable to treat large images (4096 x 4096). The test suite is not passing on
Windows 32 bits due to the limited amount of memory available to the Python process, nevertheless, pyFAI is
running on Winodws32 bits (but not as well).

Alternative Scientific Python stacks exists, like Enthought Python Distribution, Canopy, Anaconda, PythonXY
or WinPython. They all offer most of the scientific packages already installed which makes the installation of
dependencies much easier. On the other hand, they all offer different packaging system and we cannot support all
of them. Moreover, distribution from Enthought and Continuum are not free so you should be able to get support
from those companies.

Install PIP

PIP is the package management system for Python, it connects to http://pypi.python.org, download and install
software packages from there.

PIP has revolutionize the way Python libraries are installed as it is able to select the right build for your system,
or compile from the sources (Which could be tricky). If you installed python 2.7.9 or 3.4, PIP is already installed.
Unless, you will have to install it:.

Download:

https://bootstrap.pypa.io/get-pip.py

and run:

python get-pip.py

Assuming python.exe is already in your PATH.

Install the scientific stack

The strict dependencies for pyFAI are:

• NumPy

• SciPy

• matplotlib

• FabIO

Recommended dependencies are:

• cython

• h5py

• pyopencl

• PyQt4

• pymca

• rfoo

• pyfftw3

• lxml

108 Chapter 6. Installation of Python Fast Azimuthal Integration library

http://python.org
http://pypi.python.org

pyFAI Documentation, Release 0.11.0

Using PIP

Most of the dependencies are available via PIP:

pip install numpy
pip install scipy
pip install matplotlib
pip install fabio
pip install PyQt4

Note that numpy/scipy/matplotlib are already installed in most “Scientific Python distribution”

If one of the dependency is not available as a Wheel (i.e. binary package) but only as a source package, a compiler
will be required. In this case, see the next paragraph The generalization of Wheel packages should help and the
installation of binary modules should become easier.

This requires a network access and correct proxy settings. For example at ESRF, one will need to set-up the
environment for the proxy like this:

set http_proxy=http://proxy.esrf.fr:3128
set https_proxy=http://proxy.esrf.fr:3128

One day, our beloved computing service will put in place a transparent proxy, one day, maybe.

Using Christoph Gohlke repository

Christoph Gohlke, Laboratory for Fluorescence Dynamics, University of California, Irvine. He is maintaining a
repository for various Python extension (actually, all we need :) for Windows. Check twice the Python version
and the Windows version (win32 or win_amd64) before downloading and installing them

http://www.lfd.uci.edu/~gohlke/pythonlibs/

Moreover the libraries he provides are linked against the MKL library from Intel which makes his packages faster
then what you would get by simply recompiling them.

Christopher now provides packages as wheels. To install them use PIP:

pip install numpy*.whl

Install pyFAI via PIP

The latest stable release of pyFAI should also be PIP-installable (starting at version 0.10.3):

pip install pyFAI

6.5.4 Install pyFAI from sources

The sources of pyFAI are available at https://github.com/pyFAI/pyFAI/releases

In addition to the Python interpreter, you will need the C compiler compatible with your Python interpreter, for
example you can find the one for Python2.7 at: http://aka.ms/vcpython27

To upgrade the C-code in pyFAI, one needs in addition Cython:

pip install cython

6.5. Building procedure 109

http://en.wikipedia.org/wiki/Proxy_server#Transparent_proxy
http://www.lfd.uci.edu/~gohlke/pythonlibs/
https://github.com/pyFAI/pyFAI/releases
http://aka.ms/vcpython27

pyFAI Documentation, Release 0.11.0

6.6 Test suites

PyFAI comes with a test suite to ensure all core functionalities are working as expected and numerical results are
correct:

python setup.py build test

Nota: to run the test an internet connection is needed as 200MB of test images need to be download.

6.7 Environment variables

PyFAI can use a certain number of environment variable to modify its default behavior:

• PYFAI_OPENCL: set to “0” to disable the use of OpenCL

• PYFAI_DATA: path with gui, calibrant, ...

• PYFAI_TESTIMAGES: path wit test images (if absent, they get downloaded from the internet)

6.8 References:

:: _cython: http://cython.org

Author: Jérôme Kieffer

Date: 05/02/2015

Keywords: Other software related to pyFAI

110 Chapter 6. Installation of Python Fast Azimuthal Integration library

http://cython.org

CHAPTER

SEVEN

PYFAI ECOSYSTEM

7.1 Software pyFAI is relying on

7.1.1 FabIO

PyFAI is using FabIO everywhere access to a 2D images is needed. The fabio_viewer is also a lightweight
convenient viewer for diffraction images. It has been described in doi:10.1107/S0021889813000150

7.1.2 PyMca

The X-ray Fluorescence Toolkit provides convenient tools for HDF5 file browsing and mask drawing. It has been
described in doi:10.1016/j.sab.2006.12.002

7.2 Program using pyFAI as a library

7.2.1 Bubble

Client-server program to perform azimuthal integration online. Developed for the SNBL and Dubble beamlines
by Vadim DIADKIN and available from this mercurial repository.

7.2.2 Dahu

Dahu is a lightweight plugin based framework available from this git repository. Lighter then EDNA, it is techni-
cally a JSON-RPC server over Tango. Used on TRUSAXS beamline at ESRF (ID02), dahu uses pyFAI to process
data up to the kHz range.

7.2.3 Dioptas

Graphical user interface for high-pressure diffraction, developed at the APS synchrotron by C. Prescher and de-
scribed in: doi:10.1080/08957959.2015.1059835

The amount of data collected during synchrotron X-ray diffraction (XRD) experiments is constantly increas-
ing. Most of the time, the data are collected with image detectors, which necessitates the use of image reduc-
tion/integration routines to extract structural information from measured XRD patterns. This step turns out to be a
bottleneck in the data processing procedure due to a lack of suitable software packages. In particular, fast-running
synchrotron experiments require online data reduction and analysis in real time so that experimental parameters
can be adjusted interactively. Dioptas is a Python-based program for on-the-fly data processing and exploration of
two-dimensional X-ray diffraction area detector data, specifically designed for the large amount of data collected
at XRD beamlines at synchrotrons. Its fast data reduction algorithm and graphical data exploration capabilities

111

http://journals.iucr.org/j/issues/2013/02/00/kk5124/
http://www.sciencedirect.com/science/article/pii/S0584854706003764
http://www.3lp.cx/
https://github.com/kif/UPBL09a
http://www.tandfonline.com/doi/full/10.1080/08957959.2015.1059835

pyFAI Documentation, Release 0.11.0

make it ideal for online data processing during XRD experiments and batch post-processing of large numbers of
images.

7.2.4 Dpdak

Graphical user interface for small angle diffusion, developed at the Petra III synchrotron by G. Benecke and
co-workers and described in doi:10.1107/S1600576714019773

X-ray scattering experiments at synchrotron sources are characterized by large and constantly increasing amounts
of data. The great number of files generated during a synchrotron experiment is often a limiting factor in the
analysis of the data, since appropriate software is rarely available to perform fast and tailored data processing.
Furthermore, it is often necessary to perform online data reduction and analysis during the experiment in order to
interactively optimize experimental design. This article presents an open-source software package developed to
process large amounts of data from synchrotron scattering experiments. These data reduction processes involve
calibration and correction of raw data, one- or two-dimensional integration, as well as fitting and further analysis
of the data, including the extraction of certain parameters. The software, DPDAK (directly programmable data
analysis kit), is based on a plug-in structure and allows individual extension in accordance with the requirements
of the user. The article demonstrates the use of DPDAK for on- and offline analysis of scanning small-angle X-ray
scattering (SAXS) data on biological samples and microfluidic systems, as well as for a comprehensive analysis
of grazing-incidence SAXS data. In addition to a comparison with existing software packages, the structure of
DPDAK and the possibilities and limitations are discussed.

7.2.5 EDNA

EDNA is a framework for developing plugin-based applications especially for online data analysis in the X-ray
experiments field (http://edna-site.org) A EDNA data analysis server is using pyFAI as an integration engine (on
the GPU) on the ESRF BioSaxs beamline, BM29. The server is running 24x7 with a processing frequency from
0.1 to 10 Hz.

7.2.6 LImA

The Library for Image Acquisition is used at many European synchrotrons to control various types of camera. A
pyFAI plugin is available to integrate images on the fly without saving them.

7.2.7 NanoPeakCell

TODO ... Developed at IBS (Grenoble) by N. Coquelle

7.2.8 pygix

A Python library for reduction of 2D grazing-incidence X-ray scattering data developped at ESRF (ID13) by
Thomas DANE.

Grazing-incidence X-ray scattering techniques (GISAXS, GIWAXS/GID) allow the study of thin films on surfaces
that would otherwise be unmeasurable in standard transmission geometry experiments. The fixed incident X-ray
angle gives rise to a distortion in the diffraction patterns, which is extreme at wide-angles. The pygix library
provides routines for projecting 2D detector images into corrected reciprocal space maps, radial transformations
and line profile extraction using pyFAI’s regrouping functions.

7.2.9 PySAXS

TODO ... Developed at CEA by O. Taché

112 Chapter 7. PyFAI Ecosystem

http://scripts.iucr.org/cgi-bin/paper?S1600576714019773
http://edna-site.org

pyFAI Documentation, Release 0.11.0

7.2.10 xPDFsuite

Developed by the Billinge Group, this commercial software is described in arXiv 1402.3163 (2014)

xPDFsuite is an application that facilitates the workflow of atomic pair distribution function analysis of x-ray
diffraction measurements from complex materials. It is specially designed to help the scientist visualize, handle
and process large numbers of datasets that is common when working with high throughput modern synchrotron
sources. It has a full-featured interactive graphical user interface (GUI) with 3D and 3D graphics for plotting
data and it incorporates a number of powerful packages for integrating 2D powder diffraction images, analyzing
the curves to obtain PDFs and then tools for assessing the data and modeling it. It is available from diffpy.org
<http://diffpy.org>.

PyFAI is a library to deal with diffraction images for data reduction. This chapter describes the project from the
computer engineering point of view.

PyFAI is an open source project licensed under the GPL mainly written in Python (v2.6, 2.7) and heavily relying
on the python scientific ecosystem: numpy, scipy and matplotlib. It provides high performances image treatment
thanks to cython and OpenCL... but only a C-compiler is needed to build that.

7.2. Program using pyFAI as a library 113

http://arxiv.org/abs/1402.3163
http://diffpy.org

pyFAI Documentation, Release 0.11.0

114 Chapter 7. PyFAI Ecosystem

CHAPTER

EIGHT

PROGRAMMING LANGUAGE

PyFAI is a Python project but uses many programming languages:

• 15000 lines of Python (plus 5000 for the test)

• 11000 lines of Cython which are converted into ... C (about a million lines)

• 5000 lines of OpenCL kernels

The OpenCL code has been tested using:

• Nvidia OpenCL v1.1 on Linux, Windows (GPU device)

• Intel OpenCL v1.2 on Linux and Windows (CPU and ACC (Phi) devices)

• AMD OpenCL v1.2 on Linux and Windows (CPU and GPU device)

• Apple OpenCL v1.2 on MacOSX (CPU and GPU)

• Beignet OpenCL v1.2 on Linux (GPU device)

• Pocl OpenCL v1.2 on Linux (CPU device)

115

pyFAI Documentation, Release 0.11.0

116 Chapter 8. Programming language

CHAPTER

NINE

REPOSITORY:

The project is hosted by GitHub: https://github.com/pyFAI/pyFAI

Which provides the issue tracker in addition to Git hosting. Collaboration is done via Pull-Requests in github’s
web interface:

Everybody is welcome to fork the project and adapt it to his own needs: CEA-Saclay, Synchrotrons Soleil, Desy
and APS have already done so. Collaboration is encouraged and new developments can be submitted and merged
into the main branch via pull-requests.

117

https://github.com/pyFAI/pyFAI
https://github.com/kif/pyFAI/issues
https://github.com/pyFAI/pyFAI/fork

pyFAI Documentation, Release 0.11.0

118 Chapter 9. Repository:

CHAPTER

TEN

GETTING HELP

A mailing list: pyfai@esrf.fr is publicly available. To subscribe, send an email to sympa@esrf.fr with “subscribe
pyfai” as subject. On this mailing list, you will have information about release of the software, new features
available and meet experts to help you solve issues related to azimuthal integration. This mailing list is archived
and can be consulted at: http://www.edna-site.org/lurker

119

mailto:pyfai@esrf.fr
mailto:sympa@esrf.fr
http://www.edna-site.org/lurker/list/pyfai.en.html

pyFAI Documentation, Release 0.11.0

120 Chapter 10. Getting help

CHAPTER

ELEVEN

RUN DEPENDENCIES

• Python version 2.6, 2.7 3.2 or newer

• NumPy

• SciPy

• Matplotlib

• FabIO

• h5py (optional)

• pyopencl (optional)

• fftw (optional)

• pymca (optional)

• PyQt4 or PySide (for the graphical user interface)

121

pyFAI Documentation, Release 0.11.0

122 Chapter 11. Run dependencies

CHAPTER

TWELVE

BUILD DEPENDENCIES:

In addition to the run dependencies, pyFAI needs a C compiler. There is an issue with MacOSX (v10.8 onwards)
where the default compiler (Xcode5 or 6) switched from gcc 4.2 to clang which dropped the support for OpenMP
(clang v3.5 supports OpenMP under linux but not directly under MacOSX). Multiple solution exist, pick any of
those:

• Install a recent version of GCC (>=4.2)

• Use Xcode without OpenMP, using the –no-openmp flag for setup.py.

C files are generated from cython source and distributed. Cython is only needed for developing new binary
modules. If you want to generate your own C files, make sure your local Cython version supports memory-views
(available from Cython v0.17 and newer), unless your Cython files will not be compiled or used.

123

pyFAI Documentation, Release 0.11.0

124 Chapter 12. Build dependencies:

CHAPTER

THIRTEEN

BUILDING PROCEDURE

13.1 As most of the python projects:

python setup.py build install

There are few specific options to setup.py:

• –no-cython: do not use cython (even if present) and use the C source code provided by the development
team

• –no-openmp: if you compiler lacks OpenMP support, like Xcode on MacOSX

• –with-testimages: build the source distribution including all test images. Download 200MB of test images
to create a self consistent tar-ball.

125

pyFAI Documentation, Release 0.11.0

126 Chapter 13. Building procedure

CHAPTER

FOURTEEN

TEST SUITES

14.1 To run the test an internet connection is needed as 200MB of
test images will be downloaded.

Setting the environment variable http_proxy can be necessary (depending on your network):

export http_proxy=http://proxy.site.org:3128

Especially at ESRF, the configuration of the network proxy can be obtained by phoning on the hotline: 24-24.

PyFAI comes with 30 test-suites (172 tests in total) representing a coverage of 67%. This ensures both non
regression over time and ease the distribution under different platforms: pyFAI runs under Linux, MacOSX and
Windows (in each case in 32 and 64 bits). Test may not pass on computer featuring less than 2GB of memory or
32 bit computers.

Table 14.1: Test suite coverage

Name Stmts Miss Cover
pyFAI/__init__ 14 5 64%
pyFAI/_version 31 1 97%
pyFAI/azimuthalIntegrator 1209 311 74%
pyFAI/blob_detection 520 323 38%
pyFAI/calibrant 360 112 69%
pyFAI/detectors 1147 287 75%
pyFAI/directories 30 8 73%
pyFAI/geometry 815 208 74%
pyFAI/geometryRefinement 477 304 36%
pyFAI/gui_utils 66 41 38%
pyFAI/io 457 214 53%
pyFAI/massif 189 60 68%
pyFAI/multi_geometry 66 4 94%
pyFAI/ocl_azim 269 78 71%
pyFAI/ocl_azim_csr 225 46 80%
pyFAI/ocl_azim_lut 219 45 79%
pyFAI/opencl 191 52 73%
pyFAI/peak_picker 732 537 27%
pyFAI/spline 397 249 37%
pyFAI/third_party/__init__ 0 0 100%
pyFAI/third_party/six 393 184 53%
pyFAI/units 42 6 86%
pyFAI/utils 744 315 58%
test_all 81 1 99%
test_azimuthal_integrator 241 67 72%

Continued on next page

127

pyFAI Documentation, Release 0.11.0

Table 14.1 – continued from previous page
Name Stmts Miss Cover

test_bilinear 82 8 90%
test_bispev 66 16 76%
test_blob_detection 54 5 91%
test_bug_regression 41 5 88%
test_calibrant 126 35 72%
test_convolution 54 6 89%
test_csr 88 23 74%
test_detector 171 13 92%
test_distortion 56 8 86%
test_dummy 27 6 78%
test_export 87 9 90%
test_flat 112 9 92%
test_geometry 91 6 93%
test_geometry_refinement 64 7 89%
test_histogram 234 19 92%
test_integrate 139 12 91%
test_io 108 30 72%
test_marchingsquares 42 9 79%
test_mask 218 55 75%
test_multi_geometry 79 20 75%
test_openCL 225 27 88%
test_peak_picking 89 11 88%
test_polarization 57 6 89%
test_saxs 105 31 70%
test_sparse 44 5 89%
test_split_pixel 74 6 92%
test_utils 97 6 94%
test_watershed 40 6 85%
TOTAL 11585 3857 67%

Note that the test coverage tool does not count lines of Cython, nor those of OpenCL Updated 27/05/2014

Continuous integration is made by a home-made scripts which checks out the latest release and builds and runs the
test every night. Nightly builds are available for debian6-64 bits in: http://www.edna-site.org/pub/debian/binary/

128 Chapter 14. Test suites

http://www.edna-site.org/pub/debian/binary/

CHAPTER

FIFTEEN

LIST OF CONTRIBUTORS IN CODE

$ git log --pretty=’%aN##%s’ | grep -v ’Merge pull’ | grep -Po ’^[^#]+’ | sort | uniq -c | sort -rn

As of 05/2015:

• Jérôme Kieffer (ESRF)

• Aurore Deschildre (ESRF)

• Frédéric-Emmanuel Picca (Soleil)

• Giannis Ashiotis (ESRF)

• Dimitrios Karkoulis (ESRF)

• Jon Wright (ESRF)

• Zubair Nawaz (Sesame)

• Amund Hov (ESRF)

• Dodogerstlin @github

• Gunthard Benecke (Desy)

• Gero Flucke (Desy)

• Vadim Dyadkin (ESRF)

129

pyFAI Documentation, Release 0.11.0

130 Chapter 15. List of contributors in code

CHAPTER

SIXTEEN

LIST OF OTHER CONTRIBUTORS
(IDEAS OR CODE)

• Peter Boesecke (geometry)

• Manuel Sanchez del Rio (histogramming)

• Armando Solé (masking widget + PyMca plugin)

• Sebastien Petitdemange (Lima plugin)

131

pyFAI Documentation, Release 0.11.0

132 Chapter 16. List of other contributors (ideas or code)

CHAPTER

SEVENTEEN

LIST OF SUPPORTERS

• LinkSCEEM project: porting to OpenCL

• ESRF ID11: Provided manpower in 2012 and 2013 and beamtime

• ESRF ID13: Provided manpower in 2012, 2013, 2014, 2015 and beamtime

• ESRF ID29: provided manpower in 2013 (MX-calibrate)

• ESRF ID02: provided manpower 2014

• ESRF ID15: provide manpower 2015

133

pyFAI Documentation, Release 0.11.0

134 Chapter 17. List of supporters

CHAPTER

EIGHTEEN

CHANGELOG OF VERSIONS

18.1 0.1: 05/2011

• Geometry is OK

18.2 0.2: 07/2011

• Azimuthal integration using cython histogramming is working

18.3 0.3: 11/2011

• Azimuthal integration splits pixels like fit2d

18.4 0.4: 06/2012

• Global clean up of the code regarding options from command line and better design

• Correct the orientation of the azimuthal angle chi

• Rename scripts in pyFAI-calib, pyFAI-saxs and pyFAI-waxs

18.5 0.5: 06/2012

• Include OpenCL version of azimuthal integration (based on histograms)

18.6 0.6: 07/2012

• OpenCL flavor works well on GPU in double precision with device selection

18.7 0.7: 07/2012

Implementation of look-up table based integration and OpenCL version of it

135

pyFAI Documentation, Release 0.11.0

18.8 0.7.2: 08/2012

• Add diff_tomo script

• Geometry calculation optimized in (parallel) cython

18.9 0.8: 10/2012

• Detector object is member of the geometry

• Binning of the detector, propagation to the spline if needed

• Detector object know about their masks.

• Automatic mask for some detectors like Pilatus or XPad

• Implementation of sub-pixel position correction for Pilatus detectors

• LUT implementation in 1D & 2D (fully tested) both with OpenMP and with OpenCL

• Switch from C++/Cython OpenCL framework to PyOpenCL

• Port opencl code to both Windows 32/64 bits and MacOSX

• Add polarization corrections

• Use fast-CRC checksum on x86 using SSE4 (when available) to track array change on GPU buffers

• Support for flat 7*8 modules Xpad detectors.

• Benchmark with live graphics (still a memory issue with python2.6)

• Fat source distribution (python setup.py sdist –with-test-images) for debian

• Enhanced tests, especially for Saxs and OpenCL

• Recalibration tool for refining automatically parameters

• Enhancement of peak picking (much faster, recoded in pure Cython)

• Easy calibration for pixel detector (reconstruction of inter-module space)

• Error-bar generation using Poisson law

• Unified programming interface for all integration methods in 2theta, q or radius unit

• Graphical interface for azimuthal integration (pyFAI-integrate)

• Lots of test to prevent non regression

• Tool for merging images using various method (mean, median) and with outlayer rejection

• LImA plugin which can perform azimuthal integration live during the acquisition

• Distortion correction is available alone and as LImA plugin

• Recalibration can refine the wavelength in addition to 6 other parameters

• Calibration always done vs calibrant’s ring number, lots of new calibrant are available

• Selection by hand of single peaks for calibration

• New detectors: Dexela and Perkin-Elmer flat panel

• Automatic refinement of multiple images at various geometries (for MX)

• Many improvements requested by ID11 and ID13

136 Chapter 18. Changelog of Versions

pyFAI Documentation, Release 0.11.0

18.10 0.9: 10/2013

• Add detector S140 from ImXpad, Titan from Agilent, Rayonix

• Fix issues: 61, 62, 68, 76, 81, 82, 85, 86, 87

• Enhancement in LImA plugins (better structure)

• IO module with Ascii/EDF/HDF5 writers

• Switch some GUI to pyQtGraph in addition to Qt

• Correction for solid-angle formula

18.11 0.9.2: (01/2014)

• Fix memory leak in Cython part of the look-up table generation

• Benchmarks with memory profiling

18.12 0.9.3: 02/2014

• Better control for peak-picking (Contribution from Gero Flucke, Desy)

• Precise Rayonix detectors description thanks to Michael Blum

• Start integrating blob-detection algorithm for peak-picking: #70

• Switch fron OptParse to ArgPrse: #83

• Provide some calibrant by default: #91

• Description of Mar345 detector + mask#92

• Auto-registration of detectors: #97

• Recalib and check-calib can be called from calib: #99

• Fake diffraction image from calibrant: #101

• Implementation of the CSR matrix representation to replace LUT

• Tight pixel splitting: #43

• Update documentation

18.13 0.9.4: 06/2014

• include spec of Maxwell GPU

• fix issues with intel OpenCL icd v4.4

• introduce shape & max_shape in detectors

• work on marchingsquares/sorted controurplot for calibration

• Enforce the use the Qt4Agg for Matplotlib and other GUI stuff.

• Update shape of detector in case of binning

• unified distortion class: merge OpenCL & OpenMP implementation #108

• Benchmarks for distortion

• Raise the level to warning when inverting the mask

18.10. 0.9: 10/2013 137

pyFAI Documentation, Release 0.11.0

• set of new ImXpad detectors Related issue #111

• Fix issue with recalib within MX-calibrate

• saving detector description in Nexus files issue #110

• Update some calibrants: gold

• about to make peak-picking more user-friendly

• test for bragg separation

• work on PEP8 compliance

• Do not re-cythonize: makes debian package generation able to benefit from ccache

• conversion to SPD (rotation is missing)

• pixelwise worker

• correct both LUT & OCL for memory error

• replace os.linsep with “n” when file file opened in text mode (not binary)

• rework the Extension part to be explicit instead of “black magic” :)

• implement Kahan summation in Cython (default still use Doubles: faster)

• Preprocessing kernel containing all cast to float kernels #120

• update setup for no-openmp option related to issue #127

• Add read-out mode for mar345 as “guess_binning” method for detector. Also for MAR and Rayonix #125

• tool to benchmark HDF5 writing

• try to be compatible with both PySide and PyQt4 ... the uic stuff is untested and probably buggy #130

• Deactivate the automatic saturation correction by default. now it is opt-in #131

18.14 0.10.0: 10/2014

• Correct Caglioti’s formula

• Update tests and OpenCL -> works with Beignet and pocl open source drivers

• Compatibility with MacOSX and windows

18.15 0.10.1: 10/2014

• Fix issue in peak-picking

• Improve doc & manpages

• Compatibility with PyMca5

18.16 0.10.2: 11/2014

• Update documentation

• Packaging for debian 8

138 Chapter 18. Changelog of Versions

pyFAI Documentation, Release 0.11.0

18.17 0.10.3: 03/2015

• Image segmentation based on inverse watershed (only for recalib, not for calib)

• Python3 compatibility

• include testimages into distribution

18.18 0.11.0: 07/2015

• All calibrant from NIST are now available, + Nickel, Aluminum, ... with bibliographic references

• The Cell class helps defining new calibrants.

• OpenCL Bitonic sort (to be integrated into Bragg/Amorphous separation)

• Calib is available from the Python interface (procedural API), not only from the shell script.

• Many new options in calib for reset/assign/delete/validate/validate2/chiplot.

– reset: set the detector, orthogonal, centered and at 10cm

– assign: checks the assignment of groups of points to rings

– delete: remove a group of peaks

– validate: autocorrelation of images: error on the center

– validate2: autocorrelation of patterns at 180° apart: error on the center function of chi

– chiplot: assesses the quality of control points of one/multiple rings.

• Fix the regression of the initial guess in calib (Thanks Jon Wright)

• New peak picking algorithm named “watershed” and based on inverse watershed for ridge recognition

• start factorizing cython regridding engines (work ongoing)

• Add “–poni” option for pyFAI-calib (Thanks Vadim Dyakin)

• Improved “guess_binning”, especially for Perkin Elmer flat panel detectors.

• Support for non planar detectors like Curved Imaging plate developped at Aarhus

• Support for Multi-geometry experiments (tested)

• Speed improvement for detector initialization

• better isotropy in peak picking (add penalization term)

• enhanced documentation on http://pyfai.readthedocs.org

18.17. 0.10.3: 03/2015 139

http://pyfai.readthedocs.org

pyFAI Documentation, Release 0.11.0

140 Chapter 18. Changelog of Versions

CHAPTER

NINETEEN

INDICES AND TABLES

• genindex

• modindex

• search

141

pyFAI Documentation, Release 0.11.0

142 Chapter 19. Indices and tables

BIBLIOGRAPHY

[SRI2012] PyFAI, a versatile library for azimuthal regrouping J. Kieffer & D. Karkoulis J. Phys.: Conf. Ser. 425
202012 http://dx.doi.org/10.1088/1742-6596/425/20/202012

[EPDIC13] PyFAI: a Python library for high performance azimuthal integration on GPU J. Kieffer &
J. P. Wright, Powder Diffraction / Volume 28 / Supplement S2 / September 2013, pp S339-S350
http://dx.doi.org/10.1017/S0885715613000924

[FIT2D] Hammersley A. P., Svensson S. O., Hanfland M., Fitch A. N. and Hausermann D. 1996 High Press. Res.
vol14 p235–248

[SPD] Bösecke P. 2007 J. Appl. Cryst. vol40 s423–s427

[EDNA] Incardona M. F., Bourenkov G. P., Levik K., Pieritz R. A., Popov A. N. and Svensson O. 2009 J.
Synchrotron Rad. vol16 p872–879

[PyMca] Solé V. A., Papillon E., Cotte M., Walter P. and Susini J. 2007 Spectrochim. Acta Part B vol vol62 p63
– 68

[PyNX] Favre-Nicolin V., Coraux J., Richard M. I. and Renevier H. 2011 J. Appl. Cryst. vol44 p635–640

[IPython] Pérez F and Granger B E 2007 Comput. Sci. Eng. vol9 p21–29 URL http://ipython.org

[NumPy] Oliphant T E 2007 Comput. Sci. Eng. vol9 p10–20

[Cython] Behnel S, Bradshaw R, Citro C, Dalcin L, Seljebotn D and Smith K 2011 Comput. Sci. Eng. vol13 p31
–39

[OpenCL] Khronos OpenCL Working Group 2010 The OpenCL Specification, version 1.1 URL
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf

[FabIO] Sorensen H O, Knudsen E, Wright J, Kieffer J et al. 2007–2013 FabIO: I/O library for images produced
by 2D X-ray detectors URL http://fable.sf.net/

[Matplotlib] Hunter J D 2007 Comput. Sci. Eng. vol9 p90–95 ISSN 1521-9615

[SciPy] Jones E, Oliphant T, Peterson P et al. 2001– SciPy: Open source scientific tools for Python URL
http://www.scipy.org/

[FFTw] Frigo M and Johnson S G 2005 Proceedings of the IEEE 93 p 216–231

[LImA] The LIMA Project Update S. Petitdemange, L. Claustre, A. Homs, R. Homs Regojo, E. Papillon Pro-
ceedings of ICALEPCS2013 http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/html/auth1084.htm

[PyOpenCL] PyCUDA and PyOpenCL: A scripting-based approach to GPU run-time code generation Andreas
Klöckner, Nicolas Pinto, Yunsup Lee, Bryan Catanzaro, Paul Ivanov, Ahmed Fasih, Parallel Computing Vol
38, 3, March 2012, Pages 157–174 http://dx.doi.org/10.1016/j.parco.2011.09.001

[AMD] The American Mineralogist Crystal Structure Database. Downs, R.T. and Hall-Wallace, M. (2003) Amer-
ican Mineralogist 88, 247-250 http://rruff.geo.arizona.edu/AMS/amcsd.php

143

http://dx.doi.org/10.1088/1742-6596/425/20/202012
http://dx.doi.org/10.1017/S0885715613000924
http://ipython.org
http://www.khronos.org/registry/cl/specs/opencl-1.1.pdf
http://fable.sf.net/
http://www.scipy.org/
http://accelconf.web.cern.ch/AccelConf/ICALEPCS2013/html/auth1084.htm
http://dx.doi.org/10.1016/j.parco.2011.09.001
http://rruff.geo.arizona.edu/AMS/amcsd.php

pyFAI Documentation, Release 0.11.0

[COD] Crystallography Open Database: an open-access collection of crystal structures and platform for
world-wide collaboration Saulius Grazulis et al. Nucl. Acids Res. (2012) 40 (D1): D420-D427.
http://dx.doi.org/10.1093/nar/gkr900 http://www.crystallography.net/

[Dpdak] A customizable software for fast reduction and analysis of large X-ray scattering data sets: applica-
tions of the new DPDAK package to small angle X-ray scattering and grazing-incidence small angle X-ray
scattering, Benecke, G. et al., (2014) J. Appl. Cryst. 47, http://dx.doi.org/10.1107/S1600576714019773

144 Bibliography

http://dx.doi.org/10.1093/nar/gkr900
http://www.crystallography.net/
http://dx.doi.org/10.1107/S1600576714019773

PYTHON MODULE INDEX

p
pyFAI.__init__, 45
pyFAI.azimuthalIntegrator, 45
pyFAI.blob_detection, 95
pyFAI.calibrant, 96
pyFAI.calibration, 88
pyFAI.detectors, 64
pyFAI.distortion, 98
pyFAI.geometry, 53
pyFAI.geometryRefinement, 62
pyFAI.gui_utils, 104
pyFAI.integrate_widget, 52
pyFAI.io, 85
pyFAI.massif, 94
pyFAI.ocl_azim, 80
pyFAI.ocl_azim_csr, 83
pyFAI.ocl_azim_csr_dis, 83
pyFAI.ocl_azim_lut, 82
pyFAI.opencl, 78
pyFAI.peak_picker, 91
pyFAI.spline, 76
pyFAI.units, 99
pyFAI.utils, 99
pyFAI.worker, 84

145

	General introduction to PyFAI
	Python Fast Azimuthal Integration
	Introduction
	Experiment description
	Regrouping mechanism
	Related Work
	Conclusion

	Cookbook recipes
	Calibration of a diffraction setup
	Azimuthal integration using the graphical user interface

	pyFAI scripts manual
	Preprocessing tool: pyFAI-average
	Mask generation tool: drawMask_pymca
	Preprocessing tool: detector2nexus
	Calibration tool: pyFAI-calib
	Calibration tool: pyFAI-recalib
	Calibration tool: check_calib
	Calibration tool: MX-calibrate
	Integration tool: pyFAI-integrate
	Integration tool: diff_tomo
	Integration tool: pyFAI-saxs
	Integration tool: pyFAI-saxs

	Design of the Python Fast Azimuthal Integration library
	Design of the Python Fast Azimuthal Integrator

	pyFAI API
	pyFAI Package
	azimuthalIntegrator Module
	integrate_widget Module
	geometry Module
	geometryRefinement Module
	detectors Module
	spline Module
	opencl Module
	ocl_azim Module
	ocl_azim_lut Module
	ocl_azim_csr Module
	ocl_azim_csr_dis Module
	worker Module
	io Module
	calibration Module
	peak_picker Module
	massif Module
	blob_detection Module
	calibrant Module
	distortion Module
	units Module
	utils Module
	gui_utils Module

	Installation of Python Fast Azimuthal Integration library
	Abstract
	Hardware requirement
	Dependencies
	Build dependencies:
	Building procedure
	Test suites
	Environment variables
	References:

	PyFAI Ecosystem
	Software pyFAI is relying on
	Program using pyFAI as a library

	Programming language
	Repository:
	Getting help
	Run dependencies
	Build dependencies:
	Building procedure
	As most of the python projects:

	Test suites
	To run the test an internet connection is needed as 200MB of test images will be downloaded.

	List of contributors in code
	List of other contributors (ideas or code)
	List of supporters
	Changelog of Versions
	0.1: 05/2011
	0.2: 07/2011
	0.3: 11/2011
	0.4: 06/2012
	0.5: 06/2012
	0.6: 07/2012
	0.7: 07/2012
	0.7.2: 08/2012
	0.8: 10/2012
	0.9: 10/2013
	0.9.2: (01/2014)
	0.9.3: 02/2014
	0.9.4: 06/2014
	0.10.0: 10/2014
	0.10.1: 10/2014
	0.10.2: 11/2014
	0.10.3: 03/2015
	0.11.0: 07/2015

	Indices and tables
	Bibliography
	Python Module Index

