
Restricted permutations; using the permute

package

Gavin L. Simpson
University of Regina

Abstract

Keywords: permutations, restricted permutations, time series, transects, spatial grids, split-plot
designs, Monte Carlo resampling, R.

1. Introduction

In classical frequentist statistics, the significance of a relationship or model is determined by
reference to a null distribution for the test statistic. This distribution is derived mathematically
and the probability of achieving a test statistic as large or larger if the null hypothesis were true
is looked-up from this null distribution. In deriving this probability, some assumptions about the
data or the errors are made. If these assumptions are violated, then the validity of the derived
p-value may be questioned.

An alternative to deriving the null distribution from theory is to generate a null distribution of
the test statistic by randomly shuffling the data in some manner, refitting the model and deriving
values for the test statistic for the permuted data. The level of significance of the test can be
computed as the proportion of values of the test statistic from the null distribution that are equal
to or larger than the observed value.

In many data sets, simply shuffling the data at random is inappropriate; under the null hypothesis,
that data are not freely exchangeable, for example if there is temporal or spatial correlation, or
the samples are clustered in some way, such as multiple samples collected from each of a number
of fields. The permute package was designed to provide facilities for generating these restricted
permutations for use in randomisation tests. permute takes as its motivation the permutation
schemes originally available in Canoco version 3.1 (ter Braak 1990), which employed the cyclic- or
toroidal-shifts suggested by Besag and Clifford (1989).

2. Simple randomisation

As an illustration of both randomisation and simple usage of the permute package we consider a
small data set of mandible length measurements on specimens of the golden jackal (Canis aureus)
from the British Museum of Natural History, London, UK. These data were collected as part of a
study comparing prehistoric and modern canids (Higham et al. 1980), and were analysed by Manly
(2007). There are ten measurements of mandible length on both male and female specimens. The
data are available in the jackal data frame supplied with permute.

R> require(permute)

R> data(jackal)

R> jackal

2 Using the permute package

Length Sex

1 120 Male

2 107 Male

3 110 Male

4 116 Male

5 114 Male

6 111 Male

7 113 Male

8 117 Male

9 114 Male

10 112 Male

11 110 Female

12 111 Female

13 107 Female

14 108 Female

15 110 Female

16 105 Female

17 107 Female

18 106 Female

19 111 Female

20 111 Female

The interest is whether there is a difference in the mean mandible length between male and female
golden jackals. The null hypothesis is that there is zero difference in mandible length between the
two sexes or that females have larger mandibles. The alternative hypothesis is that males have
larger mandibles. The usual statistical test of this hypothesis is a one-sided t test, which can be
applied using t.test()

R> jack.t <- t.test(Length ~ Sex, data = jackal, var.equal = TRUE,

+ alternative = "greater")

R> jack.t

Two Sample t-test

data: Length by Sex

t = 3.4843, df = 18, p-value = 0.001324

alternative hypothesis: true difference in means is greater than 0

95 percent confidence interval:

2.411156 Inf

sample estimates:

mean in group Male mean in group Female

113.4 108.6

The observed t is 3.484 with 18 df. The probability of observing a value this large or larger if the
null hypothesis were true is 0.0013. Several assumptions have been made in deriving this p-value,
namely

1. random sampling of individuals from the populations of interest,

2. equal population standard deviations for males and females, and

3. that the mandible lengths are normally distributed within the sexes.

Assumption 1 is unlikely to be valid for museum specimens such as these, that have been collected
in some unknown manner. Assumption 2 may be valid, Fisher’s F -test and a Fligner-Killeen test
both suggest that the standard deviations of the two populations do not differ significantly

Gavin L. Simpson 3

R> var.test(Length ~ Sex, data = jackal)

F test to compare two variances

data: Length by Sex

F = 2.681, num df = 9, denom df = 9, p-value = 0.1579

alternative hypothesis: true ratio of variances is not equal to 1

95 percent confidence interval:

0.665931 10.793829

sample estimates:

ratio of variances

2.681034

R> fligner.test(Length ~ Sex, data = jackal)

Fligner-Killeen test of homogeneity of variances

data: Length by Sex

Fligner-Killeen:med chi-squared = 0.7808, df = 1, p-value = 0.3769

This assumption may be relaxed using var.equal = FALSE (the default) in the call to t.test(),
to employ Welch’s modification for unequal variances. Assumption 3 may be valid, but with such
a small sample we are unable to reliably test this.

A randomisation test of the same hypothesis can be performed by randomly allocating ten of the
mandible lengths to the male group and the remaining lengths to the female group. This ran-
domisation is justified under the null hypothesis because the observed difference in mean mandible
length between the two sexes is just a typical value for the difference in a sample if there were
no difference in the population. An appropriate test statistic needs to be selected. We could use
the t statistic as derived in the t-test. Alternatively, we could base our randomisation test on the
difference of means Di (male - female).

The main function in permute for providing random permutations is shuffle(). We can write our
own randomisation test for the jackal data by first creating a function to compute the difference
of means for two groups

R> meanDif <- function(x, grp) {

+ mean(x[grp == "Male"]) - mean(x[grp == "Female"])

+ }

which can be used in a simple for() loop to generate the null distribution for the difference of
means. First, we allocate some storage to hold the null difference of means; here we use 4999
random permutations so allocate a vector of length 5000. Then we iterate, randomly generating
an ordering of the Sex vector and computing the difference of means for that permutation.

R> Djackal <- numeric(length = 5000)

R> N <- nrow(jackal)

R> set.seed(42)

R> for(i in seq_len(length(Djackal) - 1)) {

+ perm <- shuffle(N)

+ Djackal[i] <- with(jackal, meanDif(Length, Sex[perm]))

+ }

R> Djackal[5000] <- with(jackal, meanDif(Length, Sex))

The observed difference of means was added to the null distribution, because under the null
hypothesis the observed allocation of mandible lengths to male and female jackals is just one of
the possible random allocations.

4 Using the permute package

The null distribution of Di can be visualised using a histogram, as shown in Figure 1. The observed
difference of means (4.8) is indicated by the red tick mark.

R> hist(Djackal, main = "",

+ xlab = expression("Mean difference (Male - Female) in mm"))

R> rug(Djackal[5000], col = "red", lwd = 2)

The number of values in the randomisation distribution equal to or larger than the observed
difference is

R> (Dbig <- sum(Djackal >= Djackal[5000]))

[1] 12

giving a permutational p-value of

R> Dbig / length(Djackal)

[1] 0.0024

which is comparable with that determined from the frequentist t-test, and indicates strong evidence
against the null hypothesis of no difference.

In total there 20C10 = 184, 756 possible allocations of the 20 observations to two groups of ten

R> choose(20, 10)

[1] 184756

so we have only evaluated a small proportion of these in the randomisation test.

The main workhorse function we used above was shuffle(). In this example, we could have used
the base R function sample() to generate the randomised indices perm that were used to permute
the Sex factor. Where shuffle() comes into it’s own is for generating permutation indices from
restricted permutation designs.

3. The shuffle() and shuffleSet() functions

In the previous section I introduced the shuffle() function to generate permutation indices for
use in a randomisation test. Now we will take a closer look at shuffle() and explore the various
restricted permutation designs from which it can generate permutation indices.

shuffle() has two arguments: i) n, the number of observations in the data set to be permuted,
and ii) control, a list that defines the permutation design describing how the samples should be
permuted.

R> args(shuffle)

function (n, control = how())

NULL

A series of convenience functions are provided that allow the user to set-up even quite complex
permutation designs with little effort. The user only needs to specify the aspects of the design
they require and the convenience functions ensure all configuration choices are set and passed on
to shuffle(). The main convenience function is how(), which returns a list specifying all the
options available for controlling the sorts of permutations returned by shuffle().

Gavin L. Simpson 5

Mean difference (Male − Female) in mm

F
re

qu
en

cy

−6 −4 −2 0 2 4 6

0
20

0
40

0
60

0
80

0
10

00

Figure 1: Distribution of the difference of mean mandible length in random allocations, ten to
each sex.

R> str(how())

List of 12

$ within :List of 6

..$ type : chr "free"

..$ constant: logi FALSE

..$ mirror : logi FALSE

..$ ncol : NULL

..$ nrow : NULL

..$ call : language Within()

..- attr(*, "class")= chr "Within"

$ plots :List of 7

..$ strata : NULL

..$ type : chr "none"

..$ mirror : logi FALSE

..$ ncol : NULL

..$ nrow : NULL

..$ plots.name: chr "NULL"

..$ call : language Plots()

..- attr(*, "class")= chr "Plots"

$ blocks : NULL

6 Using the permute package

$ nperm : num 199

$ complete : logi FALSE

$ maxperm : num 9999

$ minperm : num 99

$ all.perms : NULL

$ make : logi TRUE

$ observed : logi FALSE

$ blocks.name: chr "NULL"

$ call : language how()

- attr(*, "class")= chr "how"

The defaults describe a random permutation design where all objects are freely exchangeable.
Using these defaults, shuffle(10) amounts to sample(1:10, 10, replace = FALSE):

R> set.seed(2)

R> (r1 <- shuffle(10))

[1] 2 7 5 10 6 8 1 3 4 9

R> set.seed(2)

R> (r2 <- sample(1:10, 10, replace = FALSE))

[1] 2 7 5 10 6 8 1 3 4 9

R> all.equal(r1, r2)

[1] TRUE

3.1. Generating restricted permutations

Several types of permutation are available in permute:

• Free permutation of objects

• Time series or line transect designs, where the temporal or spatial ordering is preserved.

• Spatial grid designs, where the spatial ordering is preserved in both coordinate directions

• Permutation of plots or groups of samples.

• Blocking factors which restrict permutations to within blocks. The preceding designs can be
nested within blocks.

The first three of these can be nested within the levels of a factor or to the levels of that factor, or
to both. Such flexibility allows the analysis of split-plot designs using permutation tests, especially
when combined with blocks.

how() is used to set up the design from which shuffle() will draw a permutation. how() has
two main arguments that specify how samples are permuted within plots of samples or at the plot
level itself. These are within and plots. Two convenience functions, Within() and Plots() can
be used to set the various options for permutation. Blocks operate at the uppermost level of this
hierarchy; blocks define groups of plots, each of which may contain groups of samples.

For example, to permute the observations 1:10 assuming a time series design for the entire set of
observations, the following control object would be used

Gavin L. Simpson 7

R> set.seed(4)

R> x <- 1:10

R> CTRL <- how(within = Within(type = "series"))

R> perm <- shuffle(10, control = CTRL)

R> perm

[1] 7 8 9 10 1 2 3 4 5 6

R> x[perm] ## equivalent

[1] 7 8 9 10 1 2 3 4 5 6

It is assumed that the observations are in temporal or transect order. We only specified the type
of permutation within plots, the remaining options were set to their defaults via Within().

A more complex design, with three plots, and a 3 by 3 spatial grid arrangement within each plot
can be created as follows

R> set.seed(4)

R> plt <- gl(3, 9)

R> CTRL <- how(within = Within(type = "grid", ncol = 3, nrow = 3),

+ plots = Plots(strata = plt))

R> perm <- shuffle(length(plt), control = CTRL)

R> perm

[1] 6 4 5 9 7 8 3 1 2 14 15 13 17 18 16 11 12 10 22 23 24 25 26 27 19

[26] 20 21

Visualising the permutation as the 3 matrices may help illustrate how the data have been shuffled

R> ## Original

R> lapply(split(seq_along(plt), plt), matrix, ncol = 3)

$‘1‘

[,1] [,2] [,3]

[1,] 1 4 7

[2,] 2 5 8

[3,] 3 6 9

$‘2‘

[,1] [,2] [,3]

[1,] 10 13 16

[2,] 11 14 17

[3,] 12 15 18

$‘3‘

[,1] [,2] [,3]

[1,] 19 22 25

[2,] 20 23 26

[3,] 21 24 27

R> ## Shuffled

R> lapply(split(perm, plt), matrix, ncol = 3)

8 Using the permute package

$‘1‘

[,1] [,2] [,3]

[1,] 6 9 3

[2,] 4 7 1

[3,] 5 8 2

$‘2‘

[,1] [,2] [,3]

[1,] 14 17 11

[2,] 15 18 12

[3,] 13 16 10

$‘3‘

[,1] [,2] [,3]

[1,] 22 25 19

[2,] 23 26 20

[3,] 24 27 21

In the first grid, the lower-left corner of the grid was set to row 2 and column 2 of the original, to
row 1 and column 2 in the second grid, and to row 3 column 2 in the third grid.

To have the same permutation within each level of plt, use the constant argument of the Within()
function, setting it to TRUE

R> set.seed(4)

R> CTRL <- how(within = Within(type = "grid", ncol = 3, nrow = 3,

+ constant = TRUE),

+ plots = Plots(strata = plt))

R> perm2 <- shuffle(length(plt), control = CTRL)

R> lapply(split(perm2, plt), matrix, ncol = 3)

$‘1‘

[,1] [,2] [,3]

[1,] 6 9 3

[2,] 4 7 1

[3,] 5 8 2

$‘2‘

[,1] [,2] [,3]

[1,] 15 18 12

[2,] 13 16 10

[3,] 14 17 11

$‘3‘

[,1] [,2] [,3]

[1,] 24 27 21

[2,] 22 25 19

[3,] 23 26 20

3.2. Generating sets of permutations with shuffleSet()

There are several reasons why one might wish to generate a set of n permutations instead of
repeatedly generating permutations one at a time. Interpreting the permutation design happens
each time shuffle() is called. This is an unnecessary computational burden, especially if you want

Gavin L. Simpson 9

to perform tests with large numbers of permutations. Furthermore, having the set of permutations
available allows for expedited use with other functions, they can be iterated over using for loops
or the apply family of functions, and the set of permutations can be exported for use outside of
R.

The shuffleSet() function allows the generation of sets of permutations from any of the designs
available in permute. shuffleSet() takes an additional argument to that of shuffle(), nset,
which is the number of permutations required for the set. nset can be missing, in which case
the number of permutations in the set is looked for in the object passed to control; using this,
the desired number of permutations can be set at the time the design is created via the nperm

argument of how(). For example,

R> how(nperm = 10, within = Within(type = "series"))

Internally, shuffle() and shuffleSet() are very similar, with the major difference being that
shuffleSet() arranges repeated calls to the workhorse permutation-generating functions, only
incurring the overhead associated with interpreting the permutation design once. shuffleSet()

returns a matrix where the rows represent different permutations in the set.

As an illustration, consider again the simple time series example from earlier. Here I generate a
set of 5 permutations from the design, with the results returned as a matrix

R> set.seed(4)

R> CTRL <- how(within = Within(type = "series"))

R> pset <- shuffleSet(10, nset = 5, control = CTRL)

R> pset

No. of Permutations: 5

No. of Samples: 10 (Nested in: plots; Sequence)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 7 8 9 10 1 2 3 4 5 6

[2,] 2 3 4 5 6 7 8 9 10 1

[3,] 4 5 6 7 8 9 10 1 2 3

[4,] 3 4 5 6 7 8 9 10 1 2

[5,] 6 7 8 9 10 1 2 3 4 5

It is worth taking a moment to explain what has happened here, behind the scenes. There are
only 10 unique orderings (including the observed) in the set of permutations for this design. Such
a small set of permutations triggers1 the generation of the entire set of permutations. From this
set, shuffleSet() samples at random nset permutations. Hence the same number of random
values has been generated via the pseudo-random number generator in R but we ensure a set of
unique permutations is drawn, rather than randomly sample from a small set.

4. Defining permutation designs

In this section I give examples how various permutation designs can be specified using how(). It
is not the intention to provide exhaustive coverage of all possible designs that can be produced;
such a list would be tedious to both write and read. Instead, the main features and options will
be described through a series of examples. The reader should then be able to put together the
various options to create the exact structure required.

1The trigger is via the utility function check(), which calls another utility function, allPerms(), to generate the
set of permutations for the stated design. The trigger for complete enumeration is set via how() using argument
minperm; below this value, by default check() will generate the entire set of permutations.

10 Using the permute package

4.1. Set the number of permutations

It may be useful to specify the number of permutations required in a permutation test alongside
the permutation design. This is done via the nperm argument, as seen earlier. If nothing else is
specified

R> how(nperm = 999)

would indicate 999 random permutations where the samples are all freely exchangeable.

One advantage of using nperm is that shuffleSet() will use this if the nset argument is not
specified. Additionally, shuffleSet() will check to see if the desired number of permutations is
possible given the data and the requested design. This is done via the function check(), which is
discussed later.

4.2. The levels of the permutation hierarchy

There are three levels at which permutations can be controlled in permute. The highest level of
the hierarchy is the block level. Blocks are defined by a factor variable. Blocks restrict permutation
of samples to within the levels of this factor; samples are never swapped between blocks.

The plot level sits below blocks. Plots are defined by a factor and group samples in the same way
as blocks. As such, some permutation designs can be initiated using a factor at the plot level or
the same factor at the block level. The major difference between blocks and plots is that plots
can also be permuted, whereas blocks are never permuted.

The lowest level of a permutation design in the permute hierarchy is known as within, and refers
to samples nested within plots. If there are no plots or blocks, how samples are permuted at the
within level applies to the entire data set.

4.2.1. Permuting samples at the lowest level

How samples at the within level are permuted is configured using the Within() function. It takes
the following arguments

function (type = c("free", "series", "grid", "none"), constant = FALSE,

mirror = FALSE, ncol = NULL, nrow = NULL)

NULL

type controls how the samples at the lowest level are permuted. The default is to form unre-
stricted permutations via option "type". Options "series" and "grid" form restricted
permutations via cyclic or toroidal shifts, respectively. The former is useful for samples
that are a time series or line-transect, whilst the latter is used for samples on a regular
spatial grid. The final option, "none", will result in the samples at the lowest level not
being permuted at all. This option is only of practical use when there are plots within the
permutation/experimental design2.

constant this argument only has an effect when there are plots in the design3. constant =

FALSE, stipulates that each plot should have the same within-plot permutation. This is
useful when you have time series of observations from several plots. If all plots were sampled
at the same time points, it can be argued that at the plot level, the samples experienced the
same time and hence the same permutation should be used within each plot.

mirror when type is "series" or "grid", argument "mirror" controls whether permutations
are taken from the mirror image of the observed ordering in space or time. Consider the

2As blocks are never permuted, using type = "none" at the within level is also of no practical use.
3Owing to the current implementation, whilst this option could also be useful when blocks to define groups of

samples, it will not have any influence over how permutations are generated. As such, only use blocks for simple
blocking structures and use plots if you require greater control of the permutations at the group (i.e. plot) level.

Gavin L. Simpson 11

sequence 1, 2, 3, 4. The relationship between observations is also preserved if we reverse
the original ordering to 4, 3, 2, 1 and generate permutations from both these orderings.
This is what happens when mirror = TRUE. For time series, the reversed ordering 4, 3,

2, 1 would imply an influence of observation 4 on observation 3, which is implausible. For
spatial grids or line transects, however, this is a sensible option, and can significantly increase
the number of possible permutations4.

ncol, nrow define the dimensions of the spatial grid.

How Within() is used has already been encountered in earlier sections of this vignette; the function
is used to supply a value to the within argument of how(). You may have noticed that all the
arguments of Within() have default values? This means that the user need only supply a modified
value for the arguments they wish to change. Also, arguments that are not relevant for the type
of permutation stated are simply ignored; nrow and ncol, for example, could be set to any value
without affecting the permutation design if type != "grid"5.

4.2.2. Permuting samples at the Plot level

Permutation of samples at the plot level is configured via the Plots() function. As with Within(),
Plots() is supplied to the plots argument of how(). Plots() takes many of the same arguments
as Within(), the two differences being strata, a factor variable that describes the grouping of
samples at the plot level, and the absence of a constant argument. As the majority of arguments
are similar between Within() and Plots(), I will not repeat the details again, and only describe
the strata argument

strata a factor variable. strata describes the grouping of samples at the plot level, where samples
from the same plot are take the same level of the factor.

When a plot-level design is specified, samples are never permuted between plots, only within plots
if they are permuted at all. Hence, the type of permutation within the plots is controlled by
Within(). Note also that with Plots(), the way the individual plots are permuted can be from
any one of the four basic permutation types; "none", "free", "series", and "grid", as described
above. To permute the plots only (i.e. retain the ordering of the samples within plots), you also
need to specify Within(type = "none", ...) as the default in Within() is type = "free".
The ability to permute the plots whilst preserving the within-plot ordering is an impotant feature
in testing explanatory factors at the whole-plot level in split-plot designs and in multifactorial
analysis of variance (ter Braak and Šmilauer 2012).

4.2.3. Specifying blocks; the top of the permute hierarchy

In constrast to the within and plots levels, the blocks level is simple to specify; all that is required
is an indicator variable the same length as the data. Usually this is a factor, but how() will take
anything that can be coerced to a factor via as.factor().

It is worth repeating what the role of the block-level structure is; blocks simply restrict permutation
to within, and never between, blocks, and blocks are never permuted. This is reflected in the
implementation; the split-apply-combine paradigm is used to split on the blocking factor, the
plot- and within-level permutation design is applied separately to each block, and finally the sets
of permutations for each block are recombined.

4.3. Examples

To do.
4Setting mirror = TRUE will double or quadruple the set of permutations for "series" or "grid" permutations,

respectively, as long as there are more than two time points or columns in the grid.
5No warnings are currently given if incompatible arguments are specified; they are ignored, but may show up in

the printed output. This infelicity will be removed prior to permute version 1.0-0 being released.

12 Using the permute package

5. Using permute in R functions

permute originally started life as a set of functions contained within the vegan package (Oksanen
et al. 2013) designed to provide a replacement for the permuted.index() function. From these
humble origins, I realised other users and package authors might want to make use of the code I
was writing and so Jari oksanen, the maintainer of vegan, and I decided to spin off the code into
the permute package. Hence from the very beginning, permute was intended for use both by users,
to defining permutation designs, and by package authors, with which to implement permutation
tests within their packages.

In the previous sections, I described the various user-facing functions that are employed to set
up permutation designs and generate permutations from these. Here I will outline how package
authors can use functionality in the permute package to implement permutation tests.

In Section 2 I showed how a permutation test function could be written using the shuffle()

function and allowing the user to pass into the test function an object created with how(). As
mentioned earlier, it is more efficient to generate a set of permutations via a call to shuffleSet()

than to repeatedly call shuffle() and large number of times. Another advantage of using
shuffleSet() is that once the set of permutations has been created, parallel processing can
be used to break the set of permutations down into smaller chunks, each of which can be worked
on simultaneously. As a result, package authors are encouraged to use shuffleSet() instead of
the simpler shuffle().

To illustrate how to use permute in R functions, I’ll rework the permutation test I used for the
jackal data earlier in Section 2.

pt.test <- function(x, group, nperm = 199) {

mean difference function

meanDif <- function(i, x, grp) {

grp <- grp[i]

mean(x[grp == "Male"]) - mean(x[grp == "Female"])

}

check x and group are of same length

stopifnot(all.equal(length(x), length(group)))

number of observations

N <- nobs(x)

generate the required set of permutations

pset <- shuffleSet(N, nset = nperm)

iterate over the set of permutations applying meanDif

D <- apply(pset, 1, meanDif, x = x, grp = group)

add on the observed mean difference

D <- c(meanDif(seq_len(N), x, group), D)

compute & return the p-value

Ds <- sum(D >= D[1]) # how many >= to the observed diff?

Ds / (nperm + 1) # what proportion of perms is this (the pval)?

}

The commented function should be reasonably self explanatory. I’ve altered the in-line version
of the meanDif() function to take a vector of permutation indices i as the first argument, and
internally the grp vector is permuted according to i. The other major change is that shuffleSet()
is used to generate a set of permutations, which are then iterated over using apply().

In use we see

R> set.seed(42) ## same seed as earlier

R> pval <- with(jackal, pt.test(Length, Sex, nperm = 4999))

R> pval

Gavin L. Simpson 13

[1] 0.0024

which nicely agrees with the test we did earlier by hand.

Iterating over a set of permutation indices also means that adding parallel processing of the
permutations requires only trivial changes to the main function code. As an illustration, below I
show a parallel version of pt.test()

ppt.test <- function(x, group, nperm = 199, cores = 2) {

mean difference function

meanDif <- function(i, .x, .grp) {

.grp <- .grp[i]

mean(.x[.grp == "Male"]) - mean(.x[.grp == "Female"])

}

check x and group are of same length

stopifnot(all.equal(length(x), length(group)))

number of observations

N <- nobs(x)

generate the required set of permutations

pset <- shuffleSet(N, nset = nperm)

if (cores > 1) {

initiate a cluster

cl <- makeCluster(cores)

on.exit(stopCluster(cl = cl))

iterate over the set of permutations applying meanDif

D <- parRapply(cl, pset, meanDif, .x = x, .grp = group)

} else {

D <- apply(pset, 1, meanDif, .x = x, .grp = group)

}

add on the observed mean difference

D <- c(meanDif(seq_len(N), x, group), D)

compute & return the p-value

Ds <- sum(D >= D[1]) # how many >= to the observed diff?

Ds / (nperm + 1) # what proportion of perms is this (the pval)?

}

In use we observe

R> require("parallel")

R> set.seed(42)

R> system.time(ppval <- ppt.test(jackal$Length, jackal$Sex, nperm = 9999,

+ cores = 2))

user system elapsed

0.207 0.014 1.924

R> ppval

[1] 0.002

In this case there is little to be gained by splitting the computations over two CPU cores

R> set.seed(42)

R> system.time(ppval2 <- ppt.test(jackal$Length, jackal$Sex, nperm = 9999,

+ cores = 1))

14 Using the permute package

user system elapsed

1.966 0.005 1.983

R> ppval2

[1] 0.002

The cost of setting up and managing the parallel processes, and recombining the separate sets
of results almost negates the gain in running the permutations in parallel. Here, the computa-
tions involved in meanDif() are trivial and we would expect greater efficiencies from running the
permutations in parallel for more complex analyses.

5.1. Accesing and changing permutation designs

Th object created by how() is a relatively simple list containing the settings for the specified
permutation design. As such one could use the standard subsetting and replacement functions
in base R to alter components of the list. This is not recommended, however, as the internal
structure of the list returned by how() may change in a later version of permute. Furthermore, to
facilitate the use of update() at the user-level to alter the permutation design in a user-friendly
way, the matched how() call is stored within the list along with the matched calls for any Within()

or Plots() components. These matched calls need to be updated too if the list describing the
permutation design is altered. To allow function writers to access and alter permutation designs,
permute provides a series of extractor and replacement functions that have the forms getFoo()

and setFoo<-(), respectively,where Foo is replaced by a particular component to be extracted or
replaced.

The getFoo() functions provided by permute are

getWithin(), getPlots(), getBlocks() these extract the details of the within-, plots-, and
blocks-level components of the design. Given the current design (as of permute version
0.8-0), the first two of these return lists with classes "Within" and "Plots", respectively,
whilst getBlocks() returns the block-level factor.

getStrata() returns the factor describing the grouping of samples at the plots or blocks levels,
as determined by the value of argument which.

getType() returns the type of permutation of samples at the within or plots levels, as determined
by the value of argument which.

getMirror() returns a logical, indicating whether permutations are drawn from the mirror image
of the observed ordering at the within or plots levels, as determined by the value of argument
which.

getConstant() returns a logical, indicating whether the same permutation of samples, or a dif-
ferent permutation, is used within each of the plots.

getRow(), getCol(), getDim() return dimensions of the spatial grid of samples at the plots or
blocks levels, as determined by the value of argument which.

getNperm(), getMaxperm(), getMinperm() return numerics for the stored number of permuta-
tions requested plus two triggers used when checking permutation designs via check().

getComplete() returns a logical, indicating whether complete enumeration of the set of permu-
tations was requested.

getMake() returns a logical, indicating whether the entire set of permutations should be produced
or not.

Gavin L. Simpson 15

getObserved() returns a logical, which indicates whether the observed permutation (ordering of
samples) is included in the entire set of permutation generated by allPerms().

getAllperms() extracts the complete set of permutations if present. Returns NULL if the set has
not been generated.

The available setFoo()<- functions are

setPlots<-(), setWithin<-(); replaces the details of the within-, and plots-, components of
the design. The replacement object must be of class "Plots" or "Within", respectively,
and hence is most usefully used in combination with the Plots() or Within() constructor
functions.

setBlocks<-(); replaces the factor that partitions the observations into blocks. value can be
any R object that can be coerced to a factor vector via as.factor().

setStrata<-(); replaces either the blocks or strata components of the design, depending on
what class of object setStrata<-() is applied to. When used on an object of class "how",
setStrata<-() replaces the blocks component of that object. When used on an object
of class "Plots", setStrata<-() replaces the strata component of that object. In both
cases a factor variable is required and the replacement object will be coerced to a factor via
as.factor() if possible.

setType<-(); replaces the type component of an object of class "Plots" or "Within" with a char-
acter vector of length one. Must be one of the available types: "none", "free", "series",
or "grid".

setMirror<-(); replaces the mirror component of an object of class "Plots" or "Within" with
a logical vector of length one.

setConstant<-(); replaces the constant component of an object of class "Within" with a logical
vector of length one.

setRow<-(), setCol<-(), setDim<-(); replace one or both of the spatial grid dimensions of an
object of class "Plots" or "Within" with am integer vector of length one, or, in the case of
setDim<-(), of length 2.

setNperm<-(), setMinperm<-(), setMaxperm<-(); update the stored values for the requested
number of permutations and the minimum and maximum permutation thresholds that con-
trol whether the entire set of permutations is generated instead of nperm permutations.

setAllperms<-(); assigns a matrix of permutation indices to the all.perms component of the
design list object.

setComplete<-(); updates the status of the complete setting. Takes a logical vector of length 1
or any object coercible to such.

setMake<-(); sets the indicator controlling whether the entrie set of permutations is generated
during checking of the design via check(). Takes a logical vector of length 1 or any object
coercible to such.

setObserved<-(); updates the indicator of whether the observed ordering is included in the set
of all permutations should they be generated. Takes a logical vector of length 1 or any object
coercible to such.

5.1.1. Examples

I illustrate the behaviour of the getFoo() and setFoo<-() functions through a couple of simple
examples. Firstly, generate a design object

16 Using the permute package

R> hh <- how()

This design is one of complete randomization, so all of the settings in the object take their de-
fault values. The default number of permutations is currently 199, and can be extracted using
getNperm()

R> getNperm(hh)

[1] 199

The corresponding replacement function can be use to alter the number of permutations after
the design has been generated. To illustrate a finer point of the behaviour of these replacement
functions, compare the matched call stored in hh before and after the number of permutations is
changed

R> getCall(hh)

how()

R> setNperm(hh) <- 999

R> getNperm(hh)

[1] 999

R> getCall(hh)

how(nperm = 999)

Note how the call component has been altered to include the argument pair nperm = 999, hence
if this call were evaluated, the resulting object would be a copy of hh.

As a more complex example, consider the following design consisting of 5 blocks, each containing
2 plots of 5 samples each. Hence there are a total of 10 plots. Both the plots and within-plot
sample are time series. This design can be created using

R> hh <- how(within = Within(type = "series"),

+ plots = Plots(type = "series", strata = gl(10, 5)),

+ blocks = gl(5, 10))

To alter the design at the plot or within-plot levels, it is convenient to extract the relevant compo-
nent using getPlots() or getWithin(), update the extracted object, and finally use the updated
object to update hh. This process is illustrated below in order to change the plot-level permutation
type to "free"

R> pl <- getPlots(hh)

R> setType(pl) <- "free"

R> setPlots(hh) <- pl

We can confirm this has been changed by extracting the permutation type for the plot level

R> getType(hh, which = "plots")

[1] "free"

Notice too how the call has been expanded from gl(10, 5) to an integer vector. This expansion
is to avoid the obvious problem of locating the objects referred to in the call should the call be
re-evaluated later.

Gavin L. Simpson 17

R> getCall(getPlots(hh))

Plots(strata = c(1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 2L, 3L,

3L, 3L, 3L, 3L, 4L, 4L, 4L, 4L, 4L, 5L, 5L, 5L, 5L, 5L, 6L, 6L,

6L, 6L, 6L, 7L, 7L, 7L, 7L, 7L, 8L, 8L, 8L, 8L, 8L, 9L, 9L, 9L,

9L, 9L, 10L, 10L, 10L, 10L, 10L), type = "free")

At the top level, a user can update the design using update(). Hence the equivalent of the above
update is (this time resetting the original type; type = "series")

R> hh <- update(hh, plots = update(getPlots(hh), type = "series"))

R> getType(hh, which = "plots")

[1] "series"

However, this approach is not assured of working within a function because we do not guarantee
that components of the call used to create hh can be found from the execution frame where
update() is called. To be safe, always use the setFoo<-() replacement functions to update
design objects from within your functions.

Computational details

This vignette was built within the following environment:

• R version 3.0.2 Patched (2013-09-26 r64005), x86_64-unknown-linux-gnu

• Base packages: base, datasets, grDevices, graphics, methods, parallel, stats, utils

• Other packages: permute 0.8-0

• Loaded via a namespace (and not attached): tools 3.0.2

References

Besag J, Clifford P (1989). “Generalized Monte Carlo significance tests.” Biometrika, 76(4),
633–642.

Higham C, Kijngam A, Manly B (1980). “An analysis of prehistoric canid remains from Thailand.”
Journal of Archaeological Science, 7, 149–165.

Manly B (2007). Randomization, bootstrap and Monte Carlo methods in biology. 3rd edition.
Chapman & Hall/CRC, Boca Raton.

Oksanen J, Blanchet FG, Kindt R, Legendre P, Minchin PR, O’Hara RB, Simpson GL, Solymos
P, Stevens MHH, Wagner H (2013). vegan: Community Ecology Package. R package version
2.1-33, URL http://vegan.r-forge.r-project.org/.

ter Braak C (1990). Update notes: CANOCO version 3.1. Wageningen: Agricultural Mathematics
Group.

ter Braak C, Šmilauer P (2012). Canoco Reference Manual and User’s Guide: Software for Ordi-
nation (Version 5.0). Microcomputer Power.

http://vegan.r-forge.r-project.org/

	Introduction
	Simple randomisation
	The shuffle() and shuffleSet() functions
	Generating restricted permutations
	Generating sets of permutations with shuffleSet()

	Defining permutation designs
	Set the number of permutations
	The levels of the permutation hierarchy
	Permuting samples at the lowest level
	Permuting samples at the Plot level
	Specifying blocks; the top of the permute hierarchy

	Examples

	Using permute in R functions
	Accesing and changing permutation designs
	Examples

