A neural network package for Octave
User’s Guide
Version: 0.1.9.1

Michel D. Schmid

January 15, 2009

Contents

1 Introduction 2
1.1 Compatibility to Matlab’s TMNeural Network Toolboxo v ... 2
1.2 Version numbers e e e e e e e e e e e e 2
1.3 Known incompatibilities L. 2

1.3.1 Function nameso Lo e e e e e e 2

2 Neural Network Package for Octave 3

2.1 Available Functions 3
211 min max e 3
2.1.2 mewfl. . . . L e e 3
2.1.3 prestd e e e 4
2.1.4 poststd . .. e e e e e e e 4
2.1.5 saveMLPStruct L 4
2. 1.6 S . . Lo e e e e 4
2.1.7 subset 4
2. 1.8 train L e e e e e e e e e e 5
2.1.9 trastd ... e e e e e 6

2.2 Transfer functions L 6
2.2.1 logsig e 6
222 purelin 6
2,23 tansig ... e e e 7

3 Examples 8

3.1 Example 1. o . e 8
3.1.1 Introduction e e e e e e e e 8
3.1.2 Codem-file e e 8
3.1.3 Walkthrough e 10

3.2 Example 2 L 11
3.2.1 Imtroduction L 11
322 Codem-file e e 11
3.2.3 Walkthrough e 13

Chapter 1

Introduction

1.1 Compatibility to Matlab’s T™MNeural Network Toolbox

The compatibility is one of the strongest targets during developing this toolbox. If I have to develope an
incompatibility e.g. in naming the functions, it will be descriped in this documentation. Even though it
should be clear that I can’t make a one to one copy. First, the m-files are copyrighted and second, octave
doesn’t yet support the object oriented-programming techonology.

If you find a bug, any not described incompatibility or have some suggestions, please write me at
michaelschmid@users.sourceforge.net. This will help improving this toolbox.

1.2 Version numbers

The first number describes the major release. Version number V1.0 will be the first toolbox release which
should have the same functions like the Matlab R14 SP3 neural network Toolbox.

The second number defines the finished functions. So to start, only the MLPs will realised and so this
will be the number V0.1.0.

The third number defines the status of the actual development and function. V0.1.0 means a first
release with MLP. Actually it works only with Levenberg-Marquardt algorithm and Mean-Square-Error as
performance function.

1.3 Known incompatibilities

1.3.1 Function names
minmax

minmaz is in this toolbox called min_maz. This is because Octave already has a function whichs name is
minmaz. This is a c file and the functions min and maz are therein realized.

Chapter 2

Neural Network Package for Octave

This chapter describes all functions available in the neural network package of Octave.
Eventhough it will be as compatible as possible to the one of MATLAB(TM).

2.1 Awvailable Functions

2.1.1 min_ max

min_ maz get the minimal and maximal values of an training input matrix. So the dimension of this matrix
must be an RxN matrix where R is the number of input neurons and N depends on the number of training sets.

Syntax:

mMinMaxElements = min_max(RxN);

Description:

RxN: R x N matrix of min and max values for R input elements with N columns

Example:

(2.1)

1 11
0 21 12 0 21 8 6

[E—)

= min_max [

2.1.2 newff

newff is the short form for new feed forward network. This command creates a feed-forward backpropaga-
tion network structure.

Syntax:
net = newff(Rx2,[S1 S2 ... SN|,{TF1 TF2 ... TFN} BTF,BLF,PF)
Description:

Rx2: R x 2 matrix of min and max values for R input elements

Si: Size of ith layer, for N layers

TFi: Transfer function of ith layer, default = "tansig"

BTF: Backpropagation network training function, default = "trainlm"

BLF: Backpropagation weight /bias learning function, NOT USED, is only for MATLAB(TM) compatibility

PF: Performance function, default = "mse"
Examples:

net = newff
net = newff
net = newff
net = newff

Rx2,[2 1])

Rx2,[2 1],{"tansig","purelin"});

Rx2,[2 1],{"tansig","purelin"},"trainlm");

Rx2,[2 1],{"tansig","purelin"},"trainlm","not Used","mse");

—~ =

Comments:

In this version, you can have as much output neurons as you want. The same with the number of hidden
layers. This means you can have one input layer, unrestricted number of hidden layers and one output layer.
That’s it.

2.1.3 prestd
2.1.4 poststd
2.1.5 saveMLPStruct

This is an additional function which doesn’t exist in the neural network toolbox of MathWorks (TM). To see
the network structure, you can use this command and save the complete structure to a file. Open this file
and you have the same view like you would open the network type of MATLAB(TM).

Syntax:

saveMLPStruct(net,"initNetwork.txt");

2.1.6 sim
Syntax:

simout = sim(net,P);
Description:

Left-Hand-Side:
simout: Qutput values of the simulated network.

Right-Hand-Side:

net: Network, created and trained with newff(...) and train(...)
P: Input data

2.1.7 subset

subset can be used to optimize the data sets for train, test and validation of a neural network.
Syntax:

[mTrain, mTest, mVali] = subset(mData,nTargets,iOpti,fTest,fVali);

Description:

Left-Hand-Side:

mTrain: (R+T) x M matrix with R input rows, T output rows and M columns where M <= N.

mTest: (R+T) x S matrix with R input rows, T output rows and S columns where S <= N.

mVali: (R+T) x U matrix with R input rows, T output rows and U columns where U <= N. And U can
only exist, if S also exist.

Right-Hand-Side:

mData: (R+T) x N matrix with R input rows, T output rows and N columns
nTargets: Number of T output rows

iOpti: Integer value to define level of optimization.

fTest: Fraction to define the percentage of data sets which should be used for testing.
fVali: Fraction to define the percentage of data sets which should be used for testing.

iOpti can have following values:

0 : no optimization

1 : will randomise the column order and rerange the columns containing min and max values to be in the
train set

2 : will NOT randomise the column order, but rerange the columns containing min and max values to be in
the train set

fTest or fValie have following meaning:

Each of this arguments can be a fraction or zero. The value 1 is not allowed! The sum of both values must
also be smaller than 1!

Example: fTest = 1/3

Default values

iOpti =1

fTest = 1/3
fVali = 1/6
Examples:

mTrain = subset(mData,2,1,0,0)

[mTrain,mTest] — subset(mData,2,1,1/3,0);
[mTrain,mTest,mVali] = subset(mData,1);
[mTrain,mTest,mVali] = subset(mData,1,1,1/3,1/6);

2.1.8 train
Syntax:

net = train(MLPnet,P,T,[[,[],VV);
Description:

Left-Hand-Side:
net: Trained multi-layer network.

Right-Hand-Side:
MLPnet: Multi-layer network, created with newff(...)
P: Input data for training

T: Target data for training

[]: Not used right now, only for compatibility with Matlab
[]: Not used right now, only for compatibility with Matlab
VV: Validation data. Contains input and target values

Examples:

net = train(MLPnet,P,T)
net = train(MLPnet,P,T,[],[],VV)

P, T must have the same number of rows as in newfl(...).
VV.P, VV.T must have the same number of rows as in newff(...)

Comments:

Please be sure to put the validation values in a structure named VV.P and VV.T.
VV can be changed, but not .P and .T!

2.1.9 trastd
2.2 Transfer functions

2.2.1 logsig

a = logsig(n)

Figure 2.1: Log-Sigmoid transfer function

i

Figure 2.2: Log-Sigmoid transfer function logo

2.2.2 purelin

a = purelin(n)

Figure 2.3: Linear transfer function

74

Figure 2.4: Linear transfer function logo

2.2.3 tansig

I solved all of my real life problems with this transfer function if a non-linear function was used. In [4] page
2-6 the tansig is defined as in equation (2.2). A look on the MathWorks homepage with the keyword tansig
will show that tansig is programed as in equation (2.3).

et —e "
O e (22)
2
_ 2.3
a (]_ + 672*n) -1 ()

a = tansig(n)

Figure 2.5: Tansig transfer function

7£

Figure 2.6: Tansig transfer function logo

Chapter 3

Examples

3.1 Example 1

You can find this example in the tests/MLP directory of each release or from the subversion repository. I
will do (more or less) a line by line walkthrough, so after this should be everything clear. I assume that you
have some experience with multilayer perceptrons.

3.1.1 Introduction

Our problem can be solved with a monotonically increasing or decreasing surface. An input vector p (with 9
values) should be mapped onto one output value. Because we know that it can be solved with a monotonically
increasing or decreasing surface, we can choose a 9-1-1 multi-layer perceptron (short: MLP). This means an
MLP with 9 input neurons, only 1 hidden neuron and with 1 output neuron.

3.1.2 Code m-file

00001 ## Copyright (C) 2006 Michel D. Schmid <michaelschmidQusers.sourceforge.net>
00002 ##

00003 ##

00004 ## This program is free software; you can redistribute it and/or modify it
00005 ## under the terms of the GNU General Public License as published by

00006 ## the Free Software Foundation; either version 2, or (at your option)
00007 ## any later version.

00008 ##

00009 ## This program is distributed in the hope that it will be useful, but
00010 ## WITHOUT ANY WARRANTY; without even the implied warranty of

00011 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU

00012 ## General Public License for more details.

00013 ##

00014 ## You should have received a copy of the GNU General Public License

00015 ## along with this program; see the file COPYING. If not, write to the Free
00016 ## Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
00017 ## 02110-1301, USA.

00018

00019 ## Author: Michel D. Schmid

00020

00021

00022 ## load data

00023 mData = load("mData.txt","mData");

00024 mData = mData.mData;

00025
00026
00027
00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078

[nRows, nColumns] = size(mData);

this file contains 13 columns.
The first 12 columns are the inputs
the last column is the output,
remove column 4, 8 and 12!

H oH H ®

89 rows.

mOutput = mData(:,end);
mInput = mData(:,l:end-1);
mInput(:,[4 8 12]) = []; # delete column 4, 8 and 12

now prepare data
mInput = mInput’;
mOutput = mOutput’;

now split the data matrix in 3 pieces, train data, test data and validate data
the proportion should be about 1/2 train, 1/3 test and 1/6 validate data

in this neural network we have 12 weights, for each weight at least 3 train sets..

(that’s a rule of thumb like 1/2, 1/3 and 1/6)
1/2 of 89 = 44.5; let’s take 44 for training
nTrainSets = floor (nRows/2);

now the rest of the sets are again 1007

==> 2/3 for test sets and 1/3 for validate sets
nTestSets = (nRows-nTrainSets)/3*2;

nValiSets = nRows-nTrainSets-nTestSets;

mValiInput = mInput(:,1:nValiSets);
mValliOutput = mOutput(:,1:nValiSets);
mInput(:,1:nValiSets) = [1;

mOutput (:,1:nValiSets) = [];

mTestInput = mInput(:,l:nTestSets);
mTestOutput = mOutput(:,l:nTestSets);
mInput(:,1:nTestSets) = []1;

mOutput (:,1:nTestSets) = [];
mTrainInput = mInput(:,1l:nTrainSets);
mTrainOutput = mOutput(:,1:nTrainSets);

[mTrainInputN,cMeanInput,cStdInput] = prestd(mTrainInput) ;# standardize inputs

comments: there is no reason to standardize the outputs because we have only
one output

define the max and min inputs for each row
mMinMaxElements = min max(mTrainInputN); # input matrix with (R x 2)...

define network
nHiddenNeurons = 1;
nOutputNeurons = 1;

MLPnet = newff(mMinMaxElements, [nHiddenNeurons nOutputNeurons],\
{"tansig","purelin"},"trainlm","","mse");
for test purpose, define weights by hand

MLPnet.IW{1,1}(:) = 1.5;

00079 MLPnet.LW{2,1}(:) = 0.5;

00080 MLPnet.b{1,1}(:) = 1.5;

00081 MLPnet.b{2,1}(:) = 0.5;

00082

00083 saveMLPStruct (MLPnet, "MLP3test.txt");
00084

00085 ## define validation data new, for matlab compatibility
00086 VV.P = mValilnput;

00087 VV.T = mValliOutput;

00088

00089 ## standardize also the validate data

00090 VV.P = trastd(VV.P,cMeanInput,cStdInput) ;

00091

00092 [net] = train(MLPnet,mTrainInputN,mTrainOutput, [],[],VV);
00093

00094 # make preparations for net test and test MLPnet

00095 # standardise input & output test data

00096 [mTestInputN] = trastd(mTestInput,cMeanInput,cStdInput);
00097

00098 [simOut] = sim(net,mTestInputN);

00099 simOut

3.1.3 Walkthrough

Till line number 0023 there is realy nothing interesting.

On line 0023 & 0024 data will be loaded. This data matrix contains 13 columns. Column 4, 8 and 12 won’t
be used (this is because the datas are of a real world problem). Column 13 contains the target values. So
on the lines 0049 till 0051 this will be splittet into the corresponding peaces. A short repetition about the
datas: Each line is a data set with 9 input values and one target value. On line 0038 and 0039 the datas are
transposed. So we have now in each column one data set.

Now let’s split the data matrix again in 3 pieces. The biggest part is for training the network. The second
part for testing the trained network to be sure it’s still possible to generalize with the net. And the third
part, and the smallest one, for validate during training. This splitting happens on the lines 0041 till 0061.

Line 0063 is the first special command from this toolbox. This command will be used to pre-standardize
the input datas. Do it ever! Non linear transfer functions will squash the whole input range to an small
second range e.g. the transfer function tansig will squash the datas between -1 and +1.

On line 0069 the next toolbox command will be used. This command min_max creates a Rx2 matrix
of the complete input matrix. Don’t ask me for what MATLAB(TM) this is using. I couldn’t figure out it.
Oune part is the number of input neurons, but for this, the range would not be needed. Who cares ;-)

Now it’s time to create a structure which holds the informations about the neural network. The command
newff can do it for us. See the complete line and actually, please use it only on this way, each other try
will fail! This means, you can change the number of input neurons, the number of hidden neurons and the
number of output neurons of course. But don’t change the train algorithm or the performance function.

saveMLPStruct on line 0083 is a command which doesn’t exist in MATLAB(TM). This will save the
structure with the same informations you can see in MATLAB(TM) if you try to open the net-type.

The validation part on line 0086 & 0087 is important. The naming convention is for MATLAB(TM)
compatibility. For validate, you have to define a structure with the name VV. Inside this structure you

10

have to define actually VV.P & VV.T for validate inputs and validate targets. Bye the way, you have to
pre-standardize them like the training input matrix. Use for this the command trastd like on line 0090.

train is the next toolbox command and of course one of the most important. Please also use this com-
mand like on line 0092. Nothing else will work.

The second last step is to standardize again datas. This time the test datas. See line 0096 for this and
the last step. Simulate the network. This can be done with the command sim. This will be a critical part
if someone else will write a toolbox with this command name!

I hope this short walkthrough will help for first steps. In next time, I will try to improve this documen-
tation and of course, the toolbox commands. But time is realy rare.

3.2 Example 2

You can find this example in this directory but renamed to MLP9 1 1.m_template. 1 will explain only
differencies to the examplel, so please read it first, if you haven’t.

3.2.1 Introduction

Our problem can be solved with a monotonically increasing or decreasing surface. An input vector p (with 9
values) should be mapped onto one output value. Because we know that it can be solved with a monotonically
increasing or decreasing surface, we can choose a 9-1-1 multi-layer perceptron (short: MLP). This means an
MLP with 9 input neurons, only 1 hidden neuron and with 1 output neuron.

3.2.2 Code m-file

00001 ## Copyright (C) 2008 Michel D. Schmid <michaelschmid@users.sourceforge.net>
00002 ##

00003 ##

00004 ##

00005 ## This program is free software;you can redistribute it and/or modify it
00006 ## under the terms of the GNU General Public License as published by
00007 ## the Free Software Foundation; either version 2, or (at your option)
00008 ## any later version.

00009 ##

00010 ## This program is distributed in the hope that it will be useful, but
00011 ## WITHOUT ANY WARRANTY; without even the implied warranty of

00012 ## MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
00013 ## General Public License for more details.

00014 ##

00015 ## You should have received a copy of the GNU General Public License
00016 ## along with this program; see the file COPYING. If not, see

00017 ## http://www.gnu.org/licenses.

00018

00019 ## Author: Michel D. Schmid

00020

00021

00022 ## load data

00023 mData = load("mData.txt","mData");

00024 mData = mData.mData;

00025 [nRows, nColumns] = size(mData);

00026 # this file contains 13 columns.

00027 # The first 12 columns are the inputs

11

00028
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039
00040
00041
00042
00043
00044
00045
00046
00047
00048
00049
00050
00051
00052
00053
00054
00055
00056
00057
00058
00059
00060
00061
00062
00063
00064
00065
00066
00067
00068
00069
00070
00071
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081

the last column is the output,
remove column 4, 8 and 12!
89 rows.

mOutput = mData(:,end);
mInput = mData(:,l:end-1);
mInput(:,[4 8 12]) = []; # delete column 4, 8 and 12

mData = [mInput mQutput];

now split the data matrix in 3 pieces, train data, test data and validate
data

the proportion should be about 1/2 train, 1/3 test and 1/6 validate data
in this neural network we have 12 weights, for each weight at least 3
train sets..

that’s a rule of thumb like 1/2, 1/3 and 1/6

1/2 of 89 = 44.5; let’s take 44 for training

[mTrain,mTest ,mVali] = subset (mData’,1);

[mTrainInputN,cMeanInput,cStdInput] = prestd(mTrain(l:end-1,:));
#standardize inputs

comments: there is no reason to standardize the outputs because we have
only
one output

define the max and min inputs for each row
mMinMaxElements = min max(mTrainInputN); # input matrix with (R x 2)...

define network
nHiddenNeurons = 1;
nOutputNeurons = 1;

MLPnet = newff(mMinMaxElements, [nHiddenNeurons nOutputNeurons],\
{"tansig","purelin"},"trainlm","","mse");

for test purpose, define weights by hand

MLPnet.IW{1,1}(:) = 1.5;

MLPnet.LW{2,1}(:) = 0.5;

MLPnet.b{1,1}(:) = 1.5;

MLPnet.b{2,1}(:) = 0.5

saveMLPStruct (MLPnet,"MLP3test.txt");

define validation data new, for matlab compatibility

VV.P = mVali(l:end-1,:);
VV.T = mVali(end,:);
standardize also the validate data

VV.P = trastd(VV.P,cMeanInput,cStdInput);
[net] = train(MLPnet,mTrainInputN,mTrain(end,:),[],[]1,VV);
make preparations for net test and test MLPnet

standardise input & output test data

12

00082 [mTestInputN] = trastd(mTest(l:end-1,:),cMeanInput,cStdInput);
00083

00084 [simQut] = sim(net,mTestInputN);

00085 simOut

3.2.3 Walkthrough

The difference to the examplel starts below the line number 0035.

The difference concerns only the pre-processing section where the data set is splittet into the three subsets.
This time, the command subset is used, which makes the complete example about 19 lines shorter! On line
0023 & 0024 data will be loaded. This data matrix contains 13 columns. Column 4, 8 and 12 won’t be used
(this is because the datas are of a real world problem). Column 13 contains the target values.

Now on line 35 we have to merge the input and output targets again. Subset will take the complete
matrix as argument! On line 42 happens the complete magic :-). Subset will return three subsets containing
each time the input and output arguments. So this part must be splitet once more! But this is very easy

and happens at some specific positions below.

That’s it, subset will help you to write short scripts!

13

Bibliography

[1]

2]

13]

[4]

John W. Eaton
GNU Octave Manual, Edition 3, PDF-Version, February 1997

The MathWorks, Inc.

MATLAB Help, MATLAB Version 7.1 (R14SP3), Neural Network Toolbox Version 4.0.6
(R14SP3)

Christopher M. Bishop

Neural Networks for Pattern Recognition, OXFORD University Press, Great Clarendon
Streed, Oxford OX2 6DP, ISBN 0-19-853864-2, 2002

Martin T. Hagen, Howard B. Demuth, Mark H. Beale

NEURAL NETWORK DESIGN, PWS Publishing Company, 20 Park Plaza, Boston, MA
02116-4324, ISBN 053494332-2; 1996

14

	Introduction
	Compatibility to Matlab's ™Neural Network Toolbox
	Version numbers
	Known incompatibilities
	Function names

	Neural Network Package for Octave
	Available Functions
	min_max
	newff
	prestd
	poststd
	saveMLPStruct
	sim
	subset
	train
	trastd

	Transfer functions
	logsig
	purelin
	tansig

	Examples
	Example 1
	Introduction
	Code m-file
	Walkthrough

	Example 2
	Introduction
	Code m-file
	Walkthrough

